Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 026401    DOI: 10.1088/0256-307X/32/2/026401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Isotropic-Nematic Transition of Hard Ellipsoid Fluids
MIAO Han1, LI Yao2, LI Sheng1, XU Hai-Guang1, MA Hong-Ru3
1Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190
3School of Mechanical Engineering, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
MIAO Han, LI Yao, LI Sheng et al  2015 Chin. Phys. Lett. 32 026401
Download: PDF(654KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically study the thermodynamic properties of a hard ellipsoid fluid by mainly focusing on its phase transition from an isotropic phase into a nematic phase (i.e. isotropic–nematic phase transition). To improve the accuracy, precision, and efficiency of our computations, we attempt to employ the Wang–Landau NPT Monte Carlo algorithm in our simulations to calculate the function p(V) that gives the probability of arriving at the threshold density of the isotropic–nematic transition. Our results directly reveal that the nematic fluid phase, which is characterized by an ordered direction rather than an ordered configuration, appears and coexists with the isotropic phase when the aspect ratio α of the ellipsoid is located in a relatively narrow range of α=2.0–2.25, and it becomes dominant and is fully established when α≥αcut=2.25. We find that our estimated αcut is significantly lower than previously reported values of around 2.75. This prediction is further confirmed by the calculations of both the fluid reduced density and pressure of coexistence which show that the pressure grows up as the density increases and the probability function p(V) exhibits double peaks when the pressure enters the coexistence region. Based on these consistent results we are able to conclude that when α≥2.25 an ellipsoid fluid can fully display the nematic behavior. This study will place a useful and tight theoretical constraint on investigations of the isotropic–nematic phase transition in the future.
Published: 20 January 2015
PACS:  64.70.pv (Colloids)  
  05.20.-y (Classical statistical mechanics)  
  61.25.Em (Molecular liquids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/026401       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/026401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MIAO Han
LI Yao
LI Sheng
XU Hai-Guang
MA Hong-Ru
[1] Gast A P and Russel W B 1998 Phys. Today 51 24
[2] Likos C N 2001 Phys. Rep. 348 267
[3] Li W H and Ma H R 2003 Eur. Phys. J. E 12 321
[4] Li W H and Qiu F 2010 Chin. Phys. B 19 108204
[5] Mi L, Zhou H W, Sun Z W, Liu Li X and Xu S H 2013 Acta Phys. Sin. 62 134704 (in Chinese)
[6] Li W H, Yang T and Ma H R 2008 J. Chem. Phys. 128 049910
[7] Zhang P, Cai L A, Lian Z J and Pan X Y 2010 Chin. Phys. Lett. 27 080504
[8] Lian Z J 2011 Chin. Phys. B 20 076401
[9] Wunderlich B and Grebowicz J 1984 Adv. Polym. Sci. 60 1
[10] Chow T S and Hermans J J 1972 J. Chem. Phys. 56 3150
[11] Miao H, Li Y and Ma H 2014 J. Chem. Phys. 140 154904
[12] Drzaic P S 1986 J. Appl. Phys. 60 2142
[13] Berreman D W and Scheffer T J 1970 Phys. Rev. Lett. 25 577
[14] Pusey P N and van Megen W 1986 Nature 320 340
[15] Pusey P N, van Megen W, Bartlett P, Ackerson B J, Rarity J G and Underwood S M 1989 Phys. Rev. Lett. 63 2753
[16] Giesselmann F, Lagerwall J P F, Andersson G and Radcliffe M D 2002 Phys. Rev. E 66 051704
[17] Hwang J, Song M H, Park B, Nishimura S, Toyooka T, Wu J W, Takanishi Y, Ishikawa K and Takezoe H 2005 Nat. Mater. 4 383
[18] Doane J W, Vaz N A, Wu B G and ?umer S 1986 Appl. Phys. Lett. 48 269
[19] Jia Y G, Zhang B Y, He X Z and Ning J Z 2005 J. Appl. Polym. Sci. 98 1712
[20] Onsager L 1949 Ann. N. Y. Acad. Sci. 51 627
[21] Frenkel D, Mulder B M and McTague J P 1984 Phys. Rev. Lett. 52 287
[22] Frenkel D and Mulder B M 1985 Mol. Phys. 55 1171
[23] Veerman J A C and Frenkel D 1990 Phys. Rev. A 41 3237
[24] Lee S D 1987 J. Chem. Phys. 87 4972
[25] Taylor M P and Herzfeld J 1990 Langmuir 6 911
[26] Bates M A and Frenkel D 1999 J. Chem. Phys. 110 6553
[27] Tjipto-Margo B and Evans G T 1990 J. Chem. Phys. 93 4254
[28] Marko J F 1988 Phys. Rev. Lett. 60 325
[29] Bauss M, Colot J L, Wu X G and Xu H 1987 Phys. Rev. Lett. 59 2184
[30] Colot J L, Wu X G, Xu H and Bauss M 1988 Phys. Rev. A 38 2022
[31] Holyst R and Poniewierski A 1989 Mol. Phys. 68 381
[32] Singh U P and Singh Y 1986 Phys. Rev. A 33 2725
[33] Wang F and Landau D P 2001 Phys. Rev. Lett. 86 2050
[34] Wang F and Landau D P 2001 Phys. Rev. E 64 056101
[35] Ganzen müller G and Camp P J 2007 J. Chem. Phys. 127 154504
[36] Zheng X and Palffy-Muhoray P 2007 Phys. Rev. E 75 061709
[37] Zheng X, Iglesias W and Palffy-Muhoray P 2009 Phys. Rev. E 79 057702
[38] Perram J W and Wertheim M S 1985 J. Comput. Phys. 58 409
[39] Wang W, Wang J and Kim M S 2001 Comput. Aided Geom. Des. 18 531
[40] Bezrukov A and Stoyan D 2006 Part. Part. Syst. Charact. 23 388
[41] Landau D P and Binder K 2000 A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge: Cambridge University Press)
Viewed
Full text


Abstract