GENERAL |
|
|
|
|
Collective Dynamics for Network-Organized Identical Excitable Nodes |
TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong**, YANG Jun-Zhong |
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
|
|
Cite this article: |
TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong et al 2015 Chin. Phys. Lett. 32 020501 |
|
|
Abstract We investigate the collective dynamics of network-organized identical excitable nodes. We theoretically analyze the stability of the rest state and propose that there are two different transition paths: the stationary path and the oscillatory path. We find that, although the onset of collective dynamics strongly depend on the network topology, the local dynamics and how local nodes interact with each other decide the transition path and the involved bifurcation.
|
|
Published: 20 January 2015
|
|
PACS: |
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
64.60.aq
|
(Networks)
|
|
|
|
|
[1] Pastor-satorras R and Vespignani A 2010 Nat. Phys. 6 480 [2] Kadushin C 2012 Understanding Social Networks: Theories, Concepts and Findings (Oxford: Oxford University Press) [3] Gerstner W and Kistler W M 2002 Spiking Neuron Models (Cambridge: Cambridge University Press) [4] Strogatz S H 2001 Nature 410 268 [5] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 [6] Zhang H, Hu B, Li B W and Duan Y S 2007 Chin. Phys. Lett. 24 1618 [7] Liao X, Xia Q, Qian Y, Zhang L, Hu G and Mi Y 2011 Phys. Rev. E 83 056204 [8] Mikkelsen K, Imparato A and Torcini A 2013 Phys. Rev. Lett. 110 208101 [9] García del Molino L C, Pakdaman K, Touboul J and Wainrib G 2013 Phys. Rev. E 88 042824 [10] Nakao H and Mikhailov A S 2010 Nat. Phys. 6 544 [11] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200 [12] Roxin A, Riecke H and Solla S A 2004 Phys. Rev. Lett. 92 198101 [13] Bar M and Eiswirth M 1993 Phys. Rev. E 48 R1635 [14] Sompolinsky H, Crisanti A and Sommers H J 1988 Phys. Rev. Lett. 61 259 [15] Hermann G and Touboul J 2012 Phys. Rev. Lett. 109 018702 [16] Murray J D 1993 Mathematical Biology (Berlin: Springer-Verlag) [17] Barabási A L 2009 Science 325 412 [18] Erd?s P and Rényi A 1959 Publ. Math. (Debrecen) 6 290 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|