Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 020402    DOI: 10.1088/0256-307X/32/2/020402
GENERAL |
Einstein Energy-Momentum Complex for a Phantom Black Hole Metric
P. K. Sahoo1**, K. L. Mahanta2, D. Goit3, A. K. Sinha4, S. S. Xulu5, U. R. Das4, A. Prasad6, R. Prasad7
1Department of Mathematics, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad 500078, India
2Department of Mathematics, C.V. Raman College of Engineering, Bhubaneswar 752054, India
3Department of Physics, B.S. College, Patna 800012, India
4Department of Physics, College of Commerce, Patna 800020, India
5Department of Computer Science, University of Zululand, Kwa-Dlangezwa 3886, South Africa
6Department of Physics, D.N. College, Patna 804452, India
7Department of Physics, L.S. College, Muzaffarpur 842001, India
Cite this article:   
P. K. Sahoo, K. L. Mahanta, D. Goit et al  2015 Chin. Phys. Lett. 32 020402
Download: PDF(883KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We calculate the energy distribution associated with a static spherically symmetric non-singular phantom black hole metric in Einstein's prescription in general relativity. As required for the Einstein energy-momentum complex, we perform the calculations in quasi-Cartesian coordinates. We also calculate the momentum components and obtain a zero value, as expected from the geometry of the metric.

Published: 20 January 2015
PACS:  04.20.Jb (Exact solutions)  
  04.20.Cv (Fundamental problems and general formalism)  
  04.70.Bw (Classical black holes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/020402       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/020402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
P. K. Sahoo
K. L. Mahanta
D. Goit
A. K. Sinha
S. S. Xulu
U. R. Das
A. Prasad
R. Prasad

[1] Møller C 1958 Ann. Phys. (NY) 4 347
     Møller C 1961 Ann. Phys. (NY) 12 118
[2] Tolman R C 1930 Phys. Rev. 35 875
[3] Landau L D and Lifshitz E M 1987 The Classical Theory of Fields (Oxford: Pergamon Press) p 280
[4] Weinberg S 1972 Gravitation and Cosmology: Principles and Applications of General Theory of Relativity (New York: John Wiley Sons) p 165
[5] Papapetrou A 1948 Proc. R. Irish. Acad. A 52 11
[6] Bergmann P G and Thomson R 1953 Phys. Rev. 89 400
[7] Komar A 1959 Phys. Rev. 113 934
[8] Penrose R 1982 Proc. R. Soc. London A 381 53
[9] Virbhadra K S 1990 Phys. Rev. D 41 1086
     Virbhadra K S 1990 Phys. Rev. D 42 1066
     Virbhadra K S 1990 Phys. Rev. D 42 2919
[10] Chamorro A and Virbhadra K S 1995 Pramana J. Phys. 45 181
      Chamorro A and Virbhadra K S 1996 Int. J. Mod. Phys. D 5 251
      Virbhadra K S and Parikh J C 1993 Phys. Lett. B 317 312
      Virbhadra K S and Parikh J C 1994 Phys. Lett. B 331 302
      Virbhadra K S 1997 Int. J. Mod. Phys. A 12 4831
      Virbhadra K S 1997 Int. J. Mod. Phys. D 6 357
      Virbhadra K S1995 Pramana J. Phys. 44 317
      Virbhadra K S1992 Pramana J. Phys. 38 31
      Virbhadra K S1991 Phys. Lett. A 157 195
[11] Rosen N and Virbhadra K S 1993 Gen. Relativ. Gravit. 25 429
       Virbhadra K S 1995 Pramana J. Phys. 45 215
[12] Rosen N 1994 Gen. Relativ. Gravit. 26 319
[13] Aguirregabiria J M, Chamorro A and Virbhadra K S 1996 Gen. Relativ. Gravit. 28 1393
[14] Virbhadra K S 1999 Phys. Rev. D 60 104041
[15] Johri V B et al 1995 Gen. Relativ. Gravit. 27 313
[16] Xulu S S 1998 Int. J. Theor. Phys. 37 1773
       Xulu S S 1998 Int. J. Mod. Phys. D 7 773
       Xulu S S 2000 Int. J. Mod. Phys. A 15 2979
       Xulu S S 2000 Int. J. Theor. Phys. 39 1153
       Xulu S S 2000 Int. J. Mod. Phys. A 15 4849
       Xulu S S 2000 Mod. Phys. Lett. A 15 1511
       Xulu S S 2003 Astrophys. Space Sci. 283 23
[17] Xulu S S 2007 Int. J. Theor. Phys. 46 2915
       Xulu S S 2006 Chin. J. Phys. 44 348
       Xulu S S 2006 Found. Phys. Lett. 19 603
       Radinschi I 2001 Chin. J. Phys. 39 393
       Radinschi I 2001 Chin. J. Phys. 39 231
       Radinschi I 2004 Int. J. Mod. Phys. D 13 1019
[18] Loi S L and Vargas T 2005 Chin. J. Phys. 43 901
      Aydogdu O 2006 Int. J. Mod. Phys. D 15 459
      Aydogdu O and Salti M 2006 Czech. J. Phys. 56 8
      Aygun S and Tarhan I 2012 Pramana J. Phys.: J. Phys. 78 531
[19] Andrade V C de, Guillen L C T and Pereira J G 2000 Phys. Rev. Lett. 84 4533
[20] Bachall N A, Ostriker J P, Perlmutter S and Steinhardt P J 1999 Science 284 1481
       Perlmutter S J et al 1999 Astrophys. J. 517 565
       Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 9 373
[21] Caldwell R R 2002 Phys. Lett. B 545 23
       Nojiri S and Odintsov S D 2004 Phys. Rev. D 70 103522
       Parker L and Raval A 1999 Phys. Rev. D 60 063512
       Chiba T, Okabe T and Yamaguchi M 2000 Phys. Rev. D 62 023511
[22] Gao C J and Zhang S N 2006 arXiv:hep-th/0604114
[23] Babichev E R, Dokuchaev V and Eroshenko Yu 2004 Phys. Rev. Lett. 93 021102
[24] Bronnikov K A and Fabris J C 2005 arXiv:gr-qc/0511109
[25] Bronnikov K A and Fabris J C 2006 Phys. Rev. Lett. 96 251101
[26] Ding C, Liu C, Xiao Y, Jiang L and Cai R G 2013 Phys. Rev. D 88 104007
[27] Misner C W, Thorne K S and Wheeler J A 1973 Gravitation (W. H. Freeman and Co.) p 603
[28] Cooperstock F I and Sarracino R S 1978 J. Phys. A 11 877
[29] Claudel C M, Virbhadra K S and Ellis G F R 2001 J. Math. Phys. 42 818
       Virbhadra K S and Ellis G F R 2000 Phys. Rev. D 62 084003
       Virbhadra K S and Ellis G F R 2002 Phys. Rev. D 65 103004
       Virbhadra K S 2009 Phys. Rev. D 79 083004
       Virbhadra K S 2008 Phys. Rev. D 77 124014
       Virbhadra K S 1998 Astron. Astrophys. 337 1

Related articles from Frontiers Journals
[1] Jun Yang, Zuo-Nong Zhu. Higher-Order Rogue Wave Solutions to a Spatial Discrete Hirota Equation[J]. Chin. Phys. Lett., 2018, 35(9): 020402
[2] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 020402
[3] Verma M. K., Chandel S., Ram Shri. Anisotropic Plane Symmetric Two-Fluid Cosmological Model with Time-Varying G and Λ[J]. Chin. Phys. Lett., 2015, 32(12): 020402
[4] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 020402
[5] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 020402
[6] HE Guan-Sheng, LIN Wen-Bin. The Exact Harmonic Metric for a Moving Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2014, 31(09): 020402
[7] Shri Ram, Priyanka. Bianchi Type-II Inflationary Models with Stiff Matter and Decaying Cosmological Term[J]. Chin. Phys. Lett., 2014, 31(07): 020402
[8] SHEN Ming, ZHAO Liang. Oscillating Quintom Model with Time Periodic Varying Deceleration Parameter[J]. Chin. Phys. Lett., 2014, 31(1): 020402
[9] V. K. Shchigolev. Cosmology with an Effective Λ-Term in Lyra Manifold[J]. Chin. Phys. Lett., 2013, 30(11): 020402
[10] XUE Bo, WANG Xin. The Darboux Transformation and New Explicit Solutions for the Belov–Chaltikian Lattice[J]. Chin. Phys. Lett., 2012, 29(10): 020402
[11] Raj Bali, and Swati. LRS Bianchi Type-II Inflationary Universe with Massless Scalar Field and Time Varying Λ[J]. Chin. Phys. Lett., 2012, 29(8): 020402
[12] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020402
[13] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 020402
[14] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 020402
[15] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 020402
Viewed
Full text


Abstract