Chin. Phys. Lett.  2015, Vol. 32 Issue (02): 020501    DOI: 10.1088/0256-307X/32/2/020501
GENERAL |
Collective Dynamics for Network-Organized Identical Excitable Nodes
TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong**, YANG Jun-Zhong
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
TAO Yu-Cheng, CUI Ming-Zhu, LI Hai-Hong et al  2015 Chin. Phys. Lett. 32 020501
Download: PDF(830KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the collective dynamics of network-organized identical excitable nodes. We theoretically analyze the stability of the rest state and propose that there are two different transition paths: the stationary path and the oscillatory path. We find that, although the onset of collective dynamics strongly depend on the network topology, the local dynamics and how local nodes interact with each other decide the transition path and the involved bifurcation.
Published: 20 January 2015
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
  64.60.aq (Networks)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/32/2/020501       OR      https://cpl.iphy.ac.cn/Y2015/V32/I02/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAO Yu-Cheng
CUI Ming-Zhu
LI Hai-Hong
YANG Jun-Zhong
[1] Pastor-satorras R and Vespignani A 2010 Nat. Phys. 6 480
[2] Kadushin C 2012 Understanding Social Networks: Theories, Concepts and Findings (Oxford: Oxford University Press)
[3] Gerstner W and Kistler W M 2002 Spiking Neuron Models (Cambridge: Cambridge University Press)
[4] Strogatz S H 2001 Nature 410 268
[5] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[6] Zhang H, Hu B, Li B W and Duan Y S 2007 Chin. Phys. Lett. 24 1618
[7] Liao X, Xia Q, Qian Y, Zhang L, Hu G and Mi Y 2011 Phys. Rev. E 83 056204
[8] Mikkelsen K, Imparato A and Torcini A 2013 Phys. Rev. Lett. 110 208101
[9] García del Molino L C, Pakdaman K, Touboul J and Wainrib G 2013 Phys. Rev. E 88 042824
[10] Nakao H and Mikhailov A S 2010 Nat. Phys. 6 544
[11] Pastor-Satorras R and Vespignani A 2001 Phys. Rev. Lett. 86 3200
[12] Roxin A, Riecke H and Solla S A 2004 Phys. Rev. Lett. 92 198101
[13] Bar M and Eiswirth M 1993 Phys. Rev. E 48 R1635
[14] Sompolinsky H, Crisanti A and Sommers H J 1988 Phys. Rev. Lett. 61 259
[15] Hermann G and Touboul J 2012 Phys. Rev. Lett. 109 018702
[16] Murray J D 1993 Mathematical Biology (Berlin: Springer-Verlag)
[17] Barabási A L 2009 Science 325 412
[18] Erd?s P and Rényi A 1959 Publ. Math. (Debrecen) 6 290
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 020501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 020501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 020501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 020501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 020501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 020501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 020501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 020501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 020501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 020501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 020501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 020501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 020501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 020501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 020501
Viewed
Full text


Abstract