Chin. Phys. Lett.  2014, Vol. 31 Issue (2): 028701    DOI: 10.1088/0256-307X/31/2/028701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Effects of pH on Oxaliplatin-Induced Condensation of Single DNA Molecules
ZHANG Hong-Yan, JI Chao, LIU Yu-Ru, LI Wei, LI Hui, DOU Shuo-Xing, WANG Wei-Chi, ZHANG Ling-Yun, XIE Ping, WANG Peng-Ye**
Key Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
ZHANG Hong-Yan, JI Chao, LIU Yu-Ru et al  2014 Chin. Phys. Lett. 31 028701
Download: PDF(545KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By using magnetic tweezers, atomic force microscope and mass spectrometry, we study the effects of pH on oxaliplatin-induced DNA condensation, the DNA persistence length, the amounts of micro-loops and of oxaliplatin bound to DNA. It is found that the DNA condensation degree, the amounts of micro-loops and of oxaliplatin bound to DNA increase with the decrease in the pH value while the DNA persistence length has an opposite behavior. The observed effects may be related to the drug resistance of cancer cells.
Received: 14 November 2013      Published: 28 February 2014
PACS:  87.80.Nj (Single-molecule techniques)  
  87.64.Dz (Scanning tunneling and atomic force microscopy)  
  82.37.Rs (Single molecule manipulation of proteins and other biological molecules)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/2/028701       OR      https://cpl.iphy.ac.cn/Y2014/V31/I2/028701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hong-Yan
JI Chao
LIU Yu-Ru
LI Wei
LI Hui
DOU Shuo-Xing
WANG Wei-Chi
ZHANG Ling-Yun
XIE Ping
WANG Peng-Ye
[1] Culy C R, Clemett D and Wiseman L R 2000 Drugs 60 895
[2] Di Francesco A M, Ruggiero A and Riccardi R 2002 Cell. Mol. Life Sci. 59 1914
[3] Mani S, Graham M A, Bregman D B, Ivy P and Chaney S G 2002 Cancer Invest. 20 246
[4] El-akawi Z, Abu-hadid M, Perez R, Glavy J, Zdanowicz J, Creaven P J and Pendyala L 1996 Cancer Lett. 105 5
[5] Mishima M, Samimi G, Kondo A, Lin X and Howell S B 2002 Eur. J. Cancer 38 1405
[6] Altan N, Chen Y, Schindler M and Simon S M 1998 J. Exp. Med. 187 1583
[7] Keizer H G and Joenje H 1989 J. Natl. Cancer Inst. 81 706
[8] Simon S, Roy D and Schindler M 1994 Proc. Natl. Acad. Sci. USA 91 1128
[9] Raghunand N, Martinez-Zaguilan R, Wright S H and Gillies R J 1999 Biochem. Pharm. 57 1047
[10] Simon S M 1999 Drug Discov. Today 4 32
[11] Mahoney B P, Raghunand N, Baggett B and Gillies R J 2003 Biochem. Pharm. 66 1207
[12] Gerweck L E, Vijayappa S and Kozin S 2006 Mol. Cancer Ther. 5 1275
[13] Ji C, Zhang L Y, Hou X M, Dou S X and Wang P Y 2011 Chin. Phys. Lett. 28 068702
[14] Yamada K, Kato N, Takagi A, Koi M and Hemmi H 2005 Anal. Bioanal. Chem. 382 1702
[15] Hou X M, Zhang X H, Wei K J, Ji C, Dou S X, Wang W C, Li M and Wang P Y 2009 Nucleic Acids Res. 37 1400
[16] Zhang H Y, Liu Y R, Ji C, Li W, Dou S X, Xie P, Wang W C, Zhang L Y and Wang P Y 2013 PLOS ONE 8 e71556
[17] Bustamante C, Marko J F, Siggia E D and Smith S 1994 Science 265 1599
[18] Marko J F and Siggia E D 1995 Macromolecules 28 8759
[19] Bouchiat C, Wang M D, Allemand J F, Strick T, Block S M and Croquette V 1999 Biophys. J. 76 409
[20] Kas'ianenko N A, Bartoshevich S F and Frisman E V 1985 Mol. Biol.(Mosk) 19 1386
[21] Taylor W H and Hagerman P J 1990 J. Mol. Biol. 212 363
[22] Hagerman P J 1988 Annu. Rev. Biophys. 17 265
[23] Rizzo V and Schellman J 1981 Biopolymers 20 2143
[24] Maret G and Weill G 1983 Biopolymers 22 2727
[25] Spingler B, Whittington D A and Lippard S J 2001 Inorg. Chem. 40 5596
[26] Wu Y B, Pradhan P, Havener J, Boysen G, Swenberg J A, Campbell S L and Chaney S G 2004 J. Mol. Bio. 341 1251
[27] Mills J B and Hagerman P J 2004 Nucleic Acids Res. 32 4055
[28] Wang M D, Yin H, Landick R, Gelles J and Block S M 1997 Biophys. J. 72 1335
Related articles from Frontiers Journals
[1] Weishuai Di, Xin Wang, Yanyan Zhou, Yuehai Mei, Wei Wang, and Yi Cao. Fluorination Increases Hydrophobicity at the Macroscopic Level but not at the Microscopic Level[J]. Chin. Phys. Lett., 2022, 39(3): 028701
[2] Yu-Ru Liu, Peng-Ye Wang, Wei Li, and Ping Xie. Acceleration of DNA Replication of Klenow Fragment by Small Resisting Force[J]. Chin. Phys. Lett., 2021, 38(11): 028701
[3] Da-guan Nong, Ming Li. An Improvement on the Combination of Magnetic Trap and Fluorescent Resonant Energy Transfer[J]. Chin. Phys. Lett., 2019, 36(3): 028701
[4] ZHU Chun-Li, LI Jing. Improvements for Manipulating DNA with Optical Tweezers[J]. Chin. Phys. Lett., 2015, 32(10): 028701
[5] ZHENG Hai-Zi, NONG Da-Guan, LI Ming. Effect of Low-Pass Filtering in Force Calibration of Magnetic Tweezers[J]. Chin. Phys. Lett., 2013, 30(11): 028701
[6] ZHOU Xing-Fei, CUI Cheng-Yi, ZHANG Jin-Hai, LIU Jian-Hua, LIU Jing-Song. Comparative Study on Polarization of DNA and CdSe Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(3): 028701
Viewed
Full text


Abstract