CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
The Distinguished Charge-Trapping Capability of the Memory Device with Al2O3-Cu2O Composite as the Charge Storage Layer |
LU Jian-Xin1, OU Xin2, LAN Xue-Xin1, CAO Zheng-Yi2, LIU Xiao-Jie2, LU Wei2, GONG Chang-Jie1, XU Bo2, LI Ai-Dong2, XIA Yi-Dong2, YIN Jiang2**, LIU Zhi-Guo2 |
1National Laboratory of Solid State Microstructures, and Department of Physics, Nanjing University, Nanjing 210093 2National Laboratory of Solid State Microstructures, and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
LU Jian-Xin, OU Xin, LAN Xue-Xin et al 2014 Chin. Phys. Lett. 31 028503 |
|
|
Abstract A memory device Si/Al2O3/Al2O3-Cu2O/Al2O3/Pt is fabricated by using atomic layer deposition and rf-magnetron sputtering techniques. The memory device including the composite of Al2O3 and Cu2O as the charge storage layer shows a distinguished charge trapping capability. At a working voltage of ±11 V a memory window of 9.22 V is obtained. The x-ray photoelectron spectroscopic study shows a shoulder from Cu2+ ions around the peak of Cu1+ ions. It is suggested that the charge-trapping mechanism should be attributed to the defect states formed by the inter-diffusion at the interface of two oxides.
|
|
Received: 06 October 2013
Published: 28 February 2014
|
|
|
|
|
|
[1] Ohba R, Sugiyama N, Uchida K, Koga J and Toriumi A 2002 IEEE Trans. Electron Devices 49 1392 [2] Baron T, Pellissier B, Perniola L, Mazen F, Hartmann J M and Polland G 2003 Appl. Phys. Lett. 83 1444 [3] Wan Q, Lin C L, Liu W L and Wang T H 2003 Appl. Phys. Lett. 82 4708 [4] Chau R, Doyle B, Datta S, Kavalieros J and Zhang K 2007 Nat. Mater. 6 810 [5] White M H, Adams D A and Bu J 2000 IEEE Circuits Devices Mag. 16 22 [6] Arreghini A, Akil N, Driussi F, Esseni D, Selmi L and van Duuren M J 2008 Solid-State Electron. 52 1460 [7] French M L and White M H 1994 Solid-State Electron. 37 1913 [8] Hsu T H, You H C, Ko F H and Lei T F 2006 J. Electrochem. Soc. 153 G934 [9] You H C, Hsu T H, Ko F H, Huang J W, Yang W L and lei T F 2006 IEEE Electron Device Lett. 27 653 [10] Zhou Y, Yin J, Xu H N, Xia Y D, Liu Z G, Li A D, Gong Y P, Pu L, Yan F and Shi Y 2010 Appl. Phys. Lett. 97 143504 [11] Lan X X et al 2013 J. Appl. Phys. 114 044104 [12] Tan Y N, Chim W K, Cho B J and Choi W K 2004 IEEE Trans. Electron Devices 51 1143 [13] Jeff R C, Yun M, Ramalingam B, Lee B, Misra V, Triplett G and Gangopadhyay S 2011 Appl. Phys. Lett. 99 072104 [14] Kim J H, Yang J Y, Lee J S and Hong J P 2008 Appl. Phys. Lett. 92 013512 [15] Wallin E, Andersson J M, Chirita V and Helmerson U 2004 J. Phys.: Condens. Matter 16 8971 [16] Mirabella S et al 2008 Phys. Rev. Lett. 100 155901 [17] Hou Z F, Gong X G and Li Q 2009 J. Appl. Phys. 106 014104 [18] Spiga S, Driussi F, Lamperti A, Congedo G and Salicio O 2012 Appl. Phys. Express 5 021102 [19] Lan X X, Ou X, Lei Y, Gong C J, Yin Q N, Xu B, Xia Y D, Yin J and Liu Z G 2013 Appl. Phys. Lett. 103 192905 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|