Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 014201    DOI: 10.1088/0256-307X/31/1/014201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Broadband Optical Active Waveguides Written by Femtosecond Laser Pulses in Lithium Fluoride
Ismael Chiamenti1, Francesca Bonfigli2, Anderson S. L. Gomes3, Rosa Maria Montereali2, Larissa N. da Costa1, Hypolito J. Kalinowski1**
1Federal University of Technology– Paraná, 80230-901 Curitiba, Brazil
2ENEA, C. R. Frascati, Photonics Micro and Nanostructures Laboratory, UTAPRAD-MNF, V. E. Fermi 45, 00044 Frascati (Rome), Italy
3Department of Physics, Universidade Federal de Pernambuco, Recife, Brazil
Cite this article:   
Ismael Chiamenti, Francesca Bonfigli, Anderson S. L. Gomes et al  2014 Chin. Phys. Lett. 31 014201
Download: PDF(963KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Broadband waveguiding through light-emitting strips directly written in a blank lithium fluoride crystal with a femtosecond laser is reported. Light guiding was observed at several optical wavelengths, from blue, 458 nm, to near-infrared, at 1550 nm. Visible photoluminescence spectra of the optically active F2 and F3+ color centers produced by the fs laser writing process were measured. The wavelength-dependent refractive index increase was estimated to be in the order of 10?3–10?4 in the visible and near-infrared spectral intervals, which is consistent with the stable formation of point defects in LiF.
Received: 09 October 2013      Published: 28 January 2014
PACS:  42.82.-m (Integrated optics)  
  76.30.Mi (Color centers and other defects)  
  78.55.Fv (Solid alkali halides)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/014201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/014201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ismael Chiamenti
Francesca Bonfigli
Anderson S. L. Gomes
Rosa Maria Montereali
Larissa N. da Costa
Hypolito J. Kalinowski
[1] Dharmadhikari J A et al 2011 Opt. Commun. 284 630
[2] Osellame R et al 2006 IEEE J. Sel. Top. Quantum Electron. 12 277
[3] Nahum J and Wiegand D A 1967 Phys. Rev. 154 817
[4] Zhao Q Z et al 2003 Chin. Phys. Lett. 20 1858
[5] Kurobori T et al 2003 J. Phys.: Condens. Matter 15 L399
[6] Kawamura K et al 2004 Appl. Phys. Lett. 84 311
[7] Kurobori T, Sakai T and Aoshima S 2007 Phys. Status Solidi A 204 699
[8] Montereali R M et al 1998 Opt. Commun. 153 223
[9] Rocchetti A et al 2006 Appl. Phys. Lett. 88 261111
[10] Cremona M et al 2002 Appl. Phys. Lett. 81 4103
[11] Mussi V et al 2003 Appl. Phys. Lett. 82 388
[12] Nunes R A et al 1988 Nucl. Instrum. Methods Phys. Res. Sect. B 32 222
[13] Montecchi M et al 1999 J. Appl. Phys. 86 3745
[14] Montereali R M, Piccinini M and Burattini E 2001 Appl. Phys. Lett. 78 4082
[15] Baldacchini G et al 2000 J. Phys. Chem. Solids 61 21
[16] Baldacchini G et al 2008 J. Appl. Phys. 104 063712
[17] ANSI 2001 IEC 61300-3-4 standard, part 3-4
[18] Courrol L C et al 2004 Opt. Express 12 288
[19] Montereali R M and Piccinini M 2002 Opt. Commun. 209 201
[20] von Bibra M L and Robers A 1997 J. Lightwave Technol. 15 1695
[21] Okamoto K 2006 Fundamentals of Optical Waveguides 2nd edn (Burlington: Academic) chap 2
[22] Montereali R M et al 2005 Proc. SPIE 5850 377
[23] Basiev T T, Mirov S B and Osiko S S 1988 IEEE J. Quantum Electron. 24 1052
[24] Ter-Mikirtychev V V and Tsuboi T T 1996 Prog. Quantum Electron. 20 219
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 014201
[2] Lei Geng, Hao Liang, and Liang-You Peng. Laser-Induced Electron Fresnel Diffraction in Tunneling and Over-Barrier Ionization[J]. Chin. Phys. Lett., 2022, 39(4): 014201
[3] Xiaopeng Zhou, Xinning Zeng, Xuyang Ning, Abdusalam Abdukerim, Wei Chen, Xun Chen, Yunhua Chen, Chen Cheng, Xiangyi Cui, Yingjie Fan, Deqing Fang, Changbo Fu, Mengting Fu, Lisheng Geng, Karl Giboni, Linhui Gu, Xuyuan Guo, Ke Han, Changda He, Di Huang, Yan Huang, Yanlin Huang, Zhou Huang, Xiangdong Ji, Yonglin Ju, Shuaijie Li, Huaxuan Liu, Jianglai Liu, Xiaoying Lu, Wenbo Ma, Yugang Ma, Yajun Mao, Yue Meng, Kaixiang Ni, Jinhua Ning, Xiangxiang Ren, Changsong Shang, Guofang Shen, Lin Si, Andi Tan, Anqing Wang, Hongwei Wang, Meng Wang, Qiuhong Wang, Siguang Wang, Wei Wang, Xiuli Wang, Zhou Wang, Mengmeng Wu, Shiyong Wu, Weihao Wu, Jingkai Xia, Mengjiao Xiao, Pengwei Xie, Binbin Yan, Jijun Yang, Yong Yang, Chunxu Yu, Jumin Yuan, Ying Yuan, Dan Zhang, Tao Zhang, Li Zhao, Qibin Zheng, Jifang Zhou, and Ning Zhou (PandaX-II Collaboration). Erratum: A Search for Solar Axions and Anomalous Neutrino Magnetic Moment with the Complete PandaX-II Data [CHIN. PHYS. LETT. 38 (2021) 011301][J]. Chin. Phys. Lett., 2021, 38(10): 014201
[4] Jun-xia Zhou, Ren-hong Gao, Jintian Lin, Min Wang, Wei Chu, Wen-bo Li, Di-feng Yin, Li Deng, Zhi-wei Fang, Jian-hao Zhang, Rong-bo Wuand Ya Cheng. Electro-Optically Switchable Optical True Delay Lines of Meter-Scale Lengths Fabricated on Lithium Niobate on Insulator Using Photolithography Assisted Chemo-Mechanical Etching[J]. Chin. Phys. Lett., 2020, 37(8): 014201
[5] Shining Zhu. Meter-Level Optical Delay Line on a Low-Loss Lithium Niobate Nanophotonics Chip[J]. Chin. Phys. Lett., 2020, 37(8): 014201
[6] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 014201
[7] Lingjie Yu, Heqing Wang, Hao Li, Zhen Wang, Yidong Huang, Lixing You, Wei Zhang. A Silicon Shallow-Ridge Waveguide Integrated Superconducting Nanowire Single Photon Detector Towards Quantum Photonic Circuits[J]. Chin. Phys. Lett., 2019, 36(8): 014201
[8] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 014201
[9] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Leaky Modes in Ag Nanowire over Substrate Configuration[J]. Chin. Phys. Lett., 2017, 34(9): 014201
[10] Chuan-Pu Liu, Xin-Li Zhu, Jia-Sen Zhang, Jun Xu, Yamin Leprince-Wang, Da-Peng Yu. Energy Levels of Coupled Plasmonic Cavities[J]. Chin. Phys. Lett., 2016, 33(08): 014201
[11] A. A. Latiff, A. Dhar, S. W. Harun, I. M. Babar, S. Das, M. C. Paul, H. Ahmad. Dual-Wavelength Holmium-Doped Fiber Laser Pumped by Thulium–Ytterbium Co-Doped Fiber Laser[J]. Chin. Phys. Lett., 2016, 33(05): 014201
[12] LIN Xu-Sheng, LIU Jing-Lin, ZHENG Yun-Bao, LAN Sheng. Modulation of Junction Defects Created by Crossing Photonic Crystal Waveguides[J]. Chin. Phys. Lett., 2014, 31(1): 014201
[13] JIN Yi-Chang, XU Chao, QIU Hui-Ye, XIANG Le-Qiang, YANG Jian-Yi, JIANG Xiao-Qing. Nonreciprocal Magneto-Plasmonic Waveguide with Compact Metal-Sandwiched Structure[J]. Chin. Phys. Lett., 2013, 30(9): 014201
[14] SHEN Ao, QIU Chen, HU Ting, XU Chao, JIANG Xiao-Qing, LI Yu-Bo, YANG Jian-Yi. An Eight-Channel 400 GHz-Spacing Etched Diffraction Grating Multi/Demultiplexer on a Nanophotonic Silicon-on-Insulator Platform[J]. Chin. Phys. Lett., 2013, 30(8): 014201
[15] QIU Chen, HU Ting, WANG Wan-Jun, YU Ping, JIANG Xiao-Qing, YANG Jian-Yi. Channel-Selectable Optical Link Based on a Silicon Microring for on-Chip Interconnection[J]. Chin. Phys. Lett., 2012, 29(9): 014201
Viewed
Full text


Abstract