FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Transmission Characteristics of Waveguide-Coupled Nanocavity Embedded in Two Atoms with Dipole-Dipole Interaction |
CHENG Mu-Tian1**, MA Xiao-San1, WANG Xia2 |
1School of Electrical Engineering & Information, Anhui University of Technology, Maanshan 243002
2Wenhua College, Huazhong University of Science and Technology, Wuhan 430072 |
|
Cite this article: |
CHENG Mu-Tian, MA Xiao-San, WANG Xia 2014 Chin. Phys. Lett. 31 014202 |
|
|
Abstract Photon scattering properties in one-dimensional waveguide side coupled to a nanocavity embedded in two atoms with dipole-dipole interaction (DDI) are investigated theoretically. The analytical expressions of the transmission and reflection amplitudes are deduced by using the real-space Hamiltonian. A method to determine the coupling strength of DDI is proposed. Realization of single photon switching by modulation the DDI is investigated. The influence of dissipations on the performance of the single photon switching are exhibited. An asymmetric Fano-type resonance, which can be controlled by the DDI, appears in the transmission spectrum.
|
|
Received: 04 September 2013
Published: 28 January 2014
|
|
PACS: |
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
42.79.Gn
|
(Optical waveguides and couplers)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
|
|
|
[1] Shen J T and Fan S 2005 Phys. Rev. Lett. 95 213001
[2] Tian W, Chen B and Xu W D 2012 Chin. Phys. Lett. 29 030302
[3] Cheng M T, Song Y Y and Yu L B 2012 Chin. Phys. Lett. 29 054211
[4] Cheng M T 2012 Commun. Theor. Phys. 58 151
[5] Cheng M T, Ma X S, Ding M T, Luo Y Q and Zhao G X 2012 Phys. Rev. A 85 053840
[6] Tsoi T S and Law C K 2008 Phys. Rev. A 78 063832
[7] Shi T and Sun C P 2009 Phys. Rev. B 79 205111
[8] Yan C H, Wei L F, Jia W Z and Shen J T 2011 Phys. Rev. A 84 045801
[9] Shen J S and Fan S 2009 Phys. Rev. A 79 023837
[10] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[11] Liao J Q, Huang J F, Liu Y X, Kuang L M and Sun C P 2009 Phys. Rev. A 80 014301
[12] Zheng H, Gauthier D J and Baranger H U 2010 Phys. Rev. A 82 063816
[13] Longoo P, Schmitteckert P and Busch K 2010 Phys. Rev. Lett. 104 023602
[14] Zang X and Jiang C 2010 J. Phys. B 43 215501
[15] Kolchin P, Oulton R F and Zhang X 2011 Phys. Rev. Lett. 106 113601
[16] Zheng H, Gauthier D J and Baranger H U 2011 Phys. Rev. Lett. 107 223601
[17] Ji Z L and Gao S Y 2012 Opt. Commun. 285 1302
[18] Li J and Yu R 2011 Opt. Express 19 20991
[19] Zhang Z Y, Dong Y L, Zhang S L and Zhu S Q 2013 Opt. Express 21 20786
[20] Witthaut D and Sørensen A S 2010 N. J. Phys. 12 043052
[21] Roy D 2011 Phys. Rev. Lett. 106 053601
[22] Chang D E, Sørensen A S, Demler E A and Lukin M D 2007 Nat. Phys. 3 807
[23] Cheng M T, Luo Y Q, Wang P Z and Zhao G X 2010 Appl. Phys. Lett. 97 191903
[24] Roy D 2013 Phys. Rev. A 87 063819
[25] Yu X Y and Li J H 2013 Eur. Phys. J. D 67 177
[26] Tian W, Chen B and Tong G 2012 Int. J. Mod. Phys. B 26 1250194
[27] Berrada K, Fanchini F F and Khalek S A 2012 Phys. Rev. A 85 052315
[28] Susa C E and Reina J H 2012 Phys. Rev. A 85 022111
[29] Brennen G K, Deutsch I H and Jessen P S 2000 Phys. Rev. A 61 062309
[30] Tan L, Zhang Y Q and Liu W M 2011 Phys. Rev. A 84 063816 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|