[1] | Gaitskell R 2004 Annu. Rev. Nucl. Part. Sci. 54 315 | DIRECT DETECTION OF DARK MATTER
[2] | Marrodan Undagoitia T and Rauch L 2016 J. Phys. G 43 013001 | Dark matter direct-detection experiments
[3] | Liu J, Chen X and Ji X 2017 Nat. Phys. 13 212 | Current status of direct dark matter detection experiments
[4] | Essig R, Manalaysay A, Mardon J, Sorensen P and Volansky T 2012 Phys. Rev. Lett. 109 021301 | First Direct Detection Limits on Sub-GeV Dark Matter from XENON10
[5] | Essig R, Volansky T and Yu T T 2017 Phys. Rev. D 96 043017 | New constraints and prospects for sub-GeV dark matter scattering off electrons in xenon
[6] | Aprile E et al. (XENON) 2019 Phys. Rev. Lett. 123 251801 | Light Dark Matter Search with Ionization Signals in XENON1T
[7] | Agnes P et al. (DarkSide) 2018 Phys. Rev. Lett. 121 111303 | Constraints on Sub-GeV Dark-Matter–Electron Scattering from the DarkSide-50 Experiment
[8] | Aguilar-Arevalo A et al. (DAMIC) 2019 Phys. Rev. Lett. 123 181802 | Constraints on Light Dark Matter Particles Interacting with Electrons from DAMIC at SNOLAB
[9] | Emken T, Essig R, Kouvaris C and Sholapurkar M 2019 J. Cosmol. Astropart. Phys. 2019(09) 070 | Direct detection of strongly interacting sub-GeV dark matter via electron recoils
[10] | Abramoff O et al. (SENSEI) 2019 Phys. Rev. Lett. 122 161801 | SENSEI: Direct-Detection Constraints on Sub-GeV Dark Matter from a Shallow Underground Run Using a Prototype Skipper CCD
[11] | Redondo J 2013 J. Cosmol. Astropart. Phys. 2013(12) 008 | Solar axion flux from the axion-electron coupling
[12] | Avignone III F T, Brodzinski R L and Dimopoulos S et al. 1987 Phys. Rev. D 35 2752 | Laboratory limits on solar axions from an ultralow-background germanium spectrometer
[13] | Moriyama S 1995 Phys. Rev. Lett. 75 3222 | Proposal to Search for a Monochromatic Component of Solar Axions Using Fe
[14] | Primakoff H 1951 Phys. Rev. 81 899 | Photo-Production of Neutral Mesons in Nuclear Electric Fields and the Mean Life of the Neutral Meson
[15] | Ling R and Ping J L 2015 Chin. Phys. Lett. 32 051401 | Effective Field Theory Techniques Applied to the Properties of the Axion
[16] | Fujikawa K and Shrock R 1980 Phys. Rev. Lett. 45 963 | Magnetic Moment of a Massive Neutrino and Neutrino-Spin Rotation
[17] | Bell N F, Cirigliano V, Ramsey-Musolf M J, Vogel P and Wise M B 2005 Phys. Rev. Lett. 95 151802 | How Magnetic is the Dirac Neutrino?
[18] | Billard J, Figueroa-Feliciano E and Strigari L 2014 Phys. Rev. D 89 023524 | Implication of neutrino backgrounds on the reach of next generation dark matter direct detection experiments
[19] | Huang G Y and Zhou S 2019 J. Cosmol. Astropart. Phys. 2019(02) 024 | Constraining neutrino lifetimes and magnetic moments via solar neutrinos in the large xenon detectors
[20] | Aprile E et al. (XENON) 2020 Phys. Rev. D 102 072004 | Excess electronic recoil events in XENON1T
[21] | Robinson A E 2020 arXiv:2006.13278[hep-ex] | XENON1T observes tritium
[22] | Yan Y, Zhong W, Lin S et al. 2020 Nucl. Sci. Tech. 31 55 | Study on cosmogenic radioactive production in germanium as a background for future rare event search experiments
[23] | Tan A et al. (PandaX) 2016 Phys. Rev. Lett. 117 121303 | Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment
[24] | Kang K J, Cheng J P, Chen Y H, Li Y J, Shen M B, Wu S Y and Yue Q 2010 J. Phys.: Conf. Ser. 203 012028 | Status and prospects of a deep underground laboratory in China
[25] | Tan A et al. (PandaX) 2016 Phys. Rev. D 93 122009 | Dark matter search results from the commissioning run of PandaX-II
[26] | Cui X et al. (PandaX) 2017 Phys. Rev. Lett. 119 181302 | Dark Matter Results from 54-Ton-Day Exposure of PandaX-II Experiment
[27] | SAES Pure Gas, Purifier Model PS15-MT50 |
[28] | Wang Q et al. (PandaX) 2020 Chin. Phys. C 44 125001 | Results of dark matter search using the full PandaX-II exposure
[29] | Akerib D S et al. (LUX) 2016 Phys. Rev. D 93 072009 | Tritium calibration of the LUX dark matter experiment
[30] | Szydagis M, Balajthy J, Brodsky J, Cutter J, Huang J, Kozlova E, Lenardo B, Manalaysay A, McKinsey D, Mooney M, Mueller J, Ni K, Rischbieter G, Tripathi M, Tunnell C, Velan V and Zhao Z 2018 Noble Element Simulation Technique v2.0 |
[31] | Haselschwardt S, Kostensalo J, Mougeot X and Suhonen J 2020 Phys. Rev. C 102 065501 | Improved calculations of decay backgrounds to new physics in liquid xenon detectors
[32] | Ma W et al. (PandaX) 2020 arXiv:2006.09311[physics.ins-det] | Internal Calibration of the PandaX-II Detector with Radon Gaseous Sources
[33] | Junk T 1999 Nucl. Instrum. Methods Phys. Res. Sect. A 434 435 | Confidence level computation for combining searches with small statistics
[34] | Cowan G, Cranmer K, Gross E and Vitells O 2011 Eur. Phys. J. C 71 1554 2013 [Erratum: Eur. Phys. J. C 73 2501] | Asymptotic formulae for likelihood-based tests of new physics
[35] | Akerib D et al. (LUX) 2017 Phys. Rev. Lett. 118 261301 | First Searches for Axions and Axionlike Particles with the LUX Experiment
[36] | Viaux N, Catelan M, Stetson P B, Raffelt G G, Redondo J, Valcarce A A R and Weiss A 2013 Phys. Rev. Lett. 111 231301 | Neutrino and Axion Bounds from the Globular Cluster M5 (NGC 5904)
[37] | Agostini M et al. (Borexino) 2017 Phys. Rev. D 96 091103 | Limiting neutrino magnetic moments with Borexino Phase-II solar neutrino data
[38] | Beda A, Brudanin V, Egorov V, Medvedev D, Pogosov V, Shevchik E, Shirchenko M, Starostin A and Zhitnikov I 2013 Phys. Part. Nucl. Lett. 10 139 | Gemma experiment: The results of neutrino magnetic moment search
[39] | Miller Bertolami M M 2014 Astron. & Astrophys. 562 A123 | Limits on the neutrino magnetic dipole moment from the luminosity function of hot white dwarfs
[40] | Díaz S A, Schröder K P, Zuber K, Jack D and Barrios E E B 2019 arXiv:1910.10568[astro-ph.SR] | Constraint on the axion-electron coupling constant and the neutrino magnetic dipole moment by using the tip-RGB luminosity of fifty globular clusters
[41] | Zhang H et al. (PandaX) 2019 Sci. Chin. Phys. Mech. & Astron. 62 31011 | Dark matter direct search sensitivity of the PandaX-4T experiment
[42] | Juyal P, Giboni K L, Ji X D and Liu J L 2020 Nucl. Sci. Tech. 31 93 | On proportional scintillation in very large liquid xenon detectors
[43] | Aprile E et al. (XENON) 2020 J. Cosmol. Astropart. Phys. 2020(11) 031 | Projected WIMP sensitivity of the XENONnT dark matter experiment
[44] | Akerib D et al. (LZ) 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 953 163047 | The LUX-ZEPLIN (LZ) experiment