Chin. Phys. Lett.  2014, Vol. 31 Issue (04): 048501    DOI: 10.1088/0256-307X/31/4/048501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Impact of CHF3 Plasma Treatment on AlGaN/GaN HEMTs Identified by Low-Temperature Measurement
DU Yan-Dong, HAN Wei-Hua**, YAN Wei, YANG Fu-Hua
Engineering Research Center of Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
DU Yan-Dong, HAN Wei-Hua, YAN Wei et al  2014 Chin. Phys. Lett. 31 048501
Download: PDF(665KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the impact of CHF3 plasma treatment on the performance of AlGaN/GaN HEMT (F?HEMT) by a temperature-dependent measurement in the thermal range from 6 K to 295 K. The temperature dependence of the transconductance characteristics in F-HEMT declares that the Coulomb scattering and the optical phonon scattering are effectively enhanced by the fluorine ions in the AlGaN layer. The fluorine ions not only provide immobile negative charges to deplete 2DEG, but also enhance the Schottky barrier height of the metal gate. Thermal activation of the carrier traps induced by CHF3 plasma for F-HEMT contributes to the negative shift of the threshold voltage by -3.4 mV/°C with the increasing temperature. The reverse gate-leakage current of F-HEMT is decreased by more than two-order magnitude in comparison with that of conventional AlGaN/GaN HEMT (C-HEMT) without fluorine ions.
Received: 17 October 2013      Published: 25 March 2014
PACS:  85.40.Ry (Impurity doping, diffusion and ion implantation technology)  
  85.40.Ls (Metallization, contacts, interconnects; device isolation)  
  85.40.Hp (Lithography, masks and pattern transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/4/048501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I04/048501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Yan-Dong
HAN Wei-Hua
YAN Wei
YANG Fu-Hua
[1] Okamoto Y, Ando Y, Hataya K, Nakayama T, Miyamoto H, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N and Kuzuhara M 2004 IEEE Trans. Microwave Theory Tech. 52 2536
[2] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Proc. Device Res. Conf. (Pennsylvania USA 26–28 June 2006) p 151
[3] Shinohara K, Corrion A, Regan D, Milosavljevic I, Brown D, Burnham S, Willadsen P J, Butler C, Schmitz A, Wheeler D, Fung A and Micovic M 2010 IEEE IEDM Tech. Dig. (San Francisco USA 6–8 December 2010) p 672
[4] Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514
[5] Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Electron Devices 57 368
[6] Mizutani T, Ito M, Kishimoto S and Nakamura F 2007 IEEE Electron Device Lett. 28 549
[7] Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H and Akasaki I 2006 Jpn. J. Appl. Phys. 45 L1048
[8] Oka T and Nozawa T 2008 IEEE Electron Device Lett. 29 668
[9] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
[10] Vanko G, Lalinsk T and Hascik S 2009 Vacuum 84 235
[11] Wang M J, Yuan L, Chen K J, Xu F J and Shen B 2009 J. Appl. Phys. 105 083519
[12] Kordo? P, Donoval D, Florovi? M, Ková? J and Gregu?ová D 2008 Appl. Phys. Lett. 92 152113
[13] Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 87 242104
[14] Wang X J, Zhang J F, Zhang C J and Hao Y 2008 Acta Phys. Sin. 57 3171 (in Chinese)
[15] Karmalkar S, Sathaiya D M and Shur M S 2003 Appl. Phys. Lett. 82 3976
[16] Foty D P 1990 Cryogenics 30 1056
Related articles from Frontiers Journals
[1] Xin Su, Nan Gao, Meng Chen, Hong-Tao Xu, Xing Wei, Zeng-Feng Di. Silicon on Insulator with Highly Uniform Top Si Fabricated by H/He Coimplantation[J]. Chin. Phys. Lett., 2019, 36(6): 048501
[2] LÜ Wei-Feng, WANG Guang-Yi, LIN Mi, SUN Ling-Ling. Statistical Modeling of Gate Capacitance Variations Induced by Random Dopants in Nanometer MOSFETs Reserving Correlations[J]. Chin. Phys. Lett., 2015, 32(10): 048501
[3] JIN Xiao-Shi, LIU Xi, KWON Hyuck-In, LEE Jong-Ho. A Continuous Current Model of Accumulation Mode (Junctionless) Cylindrical Surrounding-Gate Nanowire MOSFETs[J]. Chin. Phys. Lett., 2013, 30(3): 048501
[4] LIANG Zhong-Zhu, LIANG Jing-Qiu, JIA Xiao-Peng. Effects of NaN3 Added in Fe-C System on Inclusion and Impurity of Diamond Synthesized at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(3): 048501
[5] LI Bing-Sheng, ZHANG Chong-Hong, ZHOU Li-Hong, YANG Yi-Tao,. Effects of Helium and Oxygen Common Implantation in Silicon Wafer[J]. Chin. Phys. Lett., 2008, 25(10): 048501
[6] LIANG Zhong-Zhu, JIA Xiao-Peng, LIANG Jing-Qiu. Formation of Mixture of A and C Centres in Diamond Synthesized with Fe90Ni10-C-High-Content Additive NaN3 by HPHT[J]. Chin. Phys. Lett., 2007, 24(12): 048501
[7] LIANG Zhong-Zhu, JIA Xiao-Peng, Hisao Kanda, MA Hong-An, WANG Dong-Mei, LIU Wan-Qiang, YU Run-Ze. A New Dopant of NaN3 for High-Concentration-Nitrogen Diamond Synthesized by HPHT[J]. Chin. Phys. Lett., 2007, 24(2): 048501
[8] ZHANG En-Xia, YI Wan-Bing, LIU Xiang-Hua, CHEN Meng, LIU Zhong-Li, Wang Xi. Silicon-on-Insulating Multi-Layers for Total-Dose Irradiation Hardness[J]. Chin. Phys. Lett., 2004, 21(8): 048501
[9] LI Guo-Qiang, JIE Wan-Qi, GU Zhi, YANG Ge, WANG Tao. CdZnTe Energy Levels Induced by Doping of Indium[J]. Chin. Phys. Lett., 2004, 21(2): 048501
[10] YI Wan-Bing, CHEN Jing, CHEN Meng, WANG Xi, ZOU Shi-Chang. Effect of Hydrogen Implantation on SIMOX SOI Materials[J]. Chin. Phys. Lett., 2004, 21(1): 048501
Viewed
Full text


Abstract