CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Impact of CHF3 Plasma Treatment on AlGaN/GaN HEMTs Identified by Low-Temperature Measurement |
DU Yan-Dong, HAN Wei-Hua**, YAN Wei, YANG Fu-Hua |
Engineering Research Center of Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
DU Yan-Dong, HAN Wei-Hua, YAN Wei et al 2014 Chin. Phys. Lett. 31 048501 |
|
|
Abstract We investigate the impact of CHF3 plasma treatment on the performance of AlGaN/GaN HEMT (F?HEMT) by a temperature-dependent measurement in the thermal range from 6 K to 295 K. The temperature dependence of the transconductance characteristics in F-HEMT declares that the Coulomb scattering and the optical phonon scattering are effectively enhanced by the fluorine ions in the AlGaN layer. The fluorine ions not only provide immobile negative charges to deplete 2DEG, but also enhance the Schottky barrier height of the metal gate. Thermal activation of the carrier traps induced by CHF3 plasma for F-HEMT contributes to the negative shift of the threshold voltage by -3.4 mV/°C with the increasing temperature. The reverse gate-leakage current of F-HEMT is decreased by more than two-order magnitude in comparison with that of conventional AlGaN/GaN HEMT (C-HEMT) without fluorine ions.
|
|
Received: 17 October 2013
Published: 25 March 2014
|
|
PACS: |
85.40.Ry
|
(Impurity doping, diffusion and ion implantation technology)
|
|
85.40.Ls
|
(Metallization, contacts, interconnects; device isolation)
|
|
85.40.Hp
|
(Lithography, masks and pattern transfer)
|
|
|
|
|
[1] Okamoto Y, Ando Y, Hataya K, Nakayama T, Miyamoto H, Inoue T, Senda M, Hirata K, Kosaki M, Shibata N and Kuzuhara M 2004 IEEE Trans. Microwave Theory Tech. 52 2536 [2] Wu Y F, Moore M, Saxler A, Wisleder T and Parikh P 2006 Proc. Device Res. Conf. (Pennsylvania USA 26–28 June 2006) p 151 [3] Shinohara K, Corrion A, Regan D, Milosavljevic I, Brown D, Burnham S, Willadsen P J, Butler C, Schmitz A, Wheeler D, Fung A and Micovic M 2010 IEEE IEDM Tech. Dig. (San Francisco USA 6–8 December 2010) p 672 [4] Khan M A, Chen Q, Sun C J, Yang J W, Blasingame M, Shur M S and Park H 1996 Appl. Phys. Lett. 68 514 [5] Kuroda M, Ueda T and Tanaka T 2010 IEEE Trans. Electron Devices 57 368 [6] Mizutani T, Ito M, Kishimoto S and Nakamura F 2007 IEEE Electron Device Lett. 28 549 [7] Fujii T, Tsuyukuchi N, Iwaya M, Kamiyama S, Amano H and Akasaki I 2006 Jpn. J. Appl. Phys. 45 L1048 [8] Oka T and Nozawa T 2008 IEEE Electron Device Lett. 29 668 [9] Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435 [10] Vanko G, Lalinsk T and Hascik S 2009 Vacuum 84 235 [11] Wang M J, Yuan L, Chen K J, Xu F J and Shen B 2009 J. Appl. Phys. 105 083519 [12] Kordo? P, Donoval D, Florovi? M, Ková? J and Gregu?ová D 2008 Appl. Phys. Lett. 92 152113 [13] Nepal N, Li J, Nakarmi M L, Lin J Y and Jiang H X 2005 Appl. Phys. Lett. 87 242104 [14] Wang X J, Zhang J F, Zhang C J and Hao Y 2008 Acta Phys. Sin. 57 3171 (in Chinese) [15] Karmalkar S, Sathaiya D M and Shur M S 2003 Appl. Phys. Lett. 82 3976 [16] Foty D P 1990 Cryogenics 30 1056 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|