Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 078502    DOI: 10.1088/0256-307X/30/7/078502
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
High-Efficiency InGaN/GaN Nanorod Arrays by Temperature Dependent Photoluminescence
WANG Wen-Jie1, CHEN Peng1,2**, YU Zhi-Guo1, LIU Bin1, XIE Zi-Li1, XIU Xiang-Qian1, WU Zhen-Long2, XU Feng2, XU Zhou2, HUA Xue-Mei1, ZHAO Hong1, HAN Ping1, SHI Yi1, ZHANG Rong1, ZHENG You-Dou1
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009
Cite this article:   
WANG Wen-Jie, CHEN Peng, YU Zhi-Guo et al  2013 Chin. Phys. Lett. 30 078502
Download: PDF(600KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report on the photoluminescent characteristics of InGaN/GaN multiple quantum well (MQW) nanorod arrays with high internal quantum efficiency. The InGaN/GaN MQWs are grown by metalorganic chemical vapor deposition on c-plane sapphire substrates, and then the MQW nanorod arrays are fabricated by using inductively coupled plasma etching with self-assembled Ni nanoparticle mask with low-damage etching technique. The typical diameter of the nanorods is from 200 nm to 300 nm and the length is around 800 nm, which almost is dislocation free. At room temperature, an enhancement of 3.1 times in total integrated photoluminescence intensity is achieved from the MQW nanorod arrays, in comparison to that of the as-grown MQW structure. Based on the temperature-dependent photoluminescence measurements, the internal quantum efficiency of the nanorod structure is 59.2%, i.e., 1.75 times of as-grown MQW structure (33.8%). Therefore, the nanorod structure with a significant reduction of defects can be a very promising candidate for highly efficient light emitting devices.
Received: 29 March 2013      Published: 21 November 2013
PACS:  85.60.Jb (Light-emitting devices)  
  78.67.Qa (Nanorods)  
  81.07.St (Quantum wells)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/078502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/078502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Wen-Jie
CHEN Peng
YU Zhi-Guo
LIU Bin
XIE Zi-Li
XIU Xiang-Qian
WU Zhen-Long
XU Feng
XU Zhou
HUA Xue-Mei
ZHAO Hong
HAN Ping
SHI Yi
ZHANG Rong
ZHENG You-Dou
[1] Nakamura S and Fasol G 2000 Blue Laser Diode (Berlin: Springer) p 4
[2] Wang J X, Wang L, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 118105
[3] Peng W C and Wu Y S 2006 Appl. Phys. Lett. 88 181117
[4] Xie Z L, Zhang R, Liu B, Xiu X Q, Su H, Li Y, Hua X M, Zhao H, Chen P, Han P, Shi Y and Zheng Y D 2011 Chin. Phys. Lett. 28 087102
[5] Kuo Y K, Wang T H and Chang J Y 2012 Appl. Phys. Lett. 100 031112
[6] Lin Y S, Ma K J, Hsu C, Chung Y Y, Liu C W, Feng S W, Cheng Y C, Yang C C, Mao M H, Chuang H W, Kuo C T, Tsang J S and Weirich T E 2002 Appl. Phys. Lett. 80 2571
[7] Feng S W, Cheng Y C, Chung Y Y, Yang C C, Lin Y S, Hsu C, Ma K J and Chyi J I 2002 J. Appl. Phys. 92 4441
[8] Chen M K, Cheng Y C, Chen J Y, Wu C M, Yang C C, Ma K J, Yang J R and Rosenauer A 2005 J. Cryst. Growth 279 55
[9] Cheng Y C, Lin E C, Wu C M, Yang C C, Yang J R, Rosenauer A, Ma K J, Shi S C, Chen L C, Pan C C and Chyi J I 2004 Appl. Phys. Lett. 84 2506
[10] Cao X A, Teetsov J M, D'Evelyn M P, Merfeld D W and Yan C H 2004 Appl. Phys. Lett. 85 7
[11] Bell A, Liu R, Ponce F A, Amano H, Akasaki I and Cherns D 2003 Appl. Phys. Lett. 82 349
[12] Nagahama S, Iwasa N, Senoh M, Matsusgita T, Sugimoto Y, Kiyoku H, Kozaki T, Sano M, Matsumura H, Umemoto H, Chocho K and Mukai T 2000 Jpn. J. Appl. Phys. 39 L647
[13] Kikuchi A, Yamada T, Nakamura S, Kusakabe K, Sugihara D and Kishino K 2000 Jpn. J. Appl. Phys. 39 L330
[14] Yu Z G, Chen P, Yang G F, Liu B, Xie Z L, Xiu X Q, Wu Z L, Xu F, Xu Z, Hua X M, Han P, Shi Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 078501
[15] Ryu H Y, Hwang J K, Song D S, Han I Y and Lee Y H 2001 Appl. Phys. Lett. 78 1174
[16] Kuo M L, Lee Y J and Shen T C 2009 Opt. Lett. 34 2078
[17] Huh C, Lee K S, Kang E J and Park S J 2003 J. Appl. Phys. 93 9383
[18] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855
Related articles from Frontiers Journals
[1] Jingrui Ma, Haodong Tang, Xiangwei Qu, Guohong Xiang, Siqi Jia, Pai Liu, Kai Wang, and Xiao Wei Sun. A $dC/dV$ Measurement for Quantum-Dot Light-Emitting Diodes[J]. Chin. Phys. Lett., 2022, 39(12): 078502
[2] Jia-Ming Zeng, Xiao-Lan Wang, Chun-Lan Mo, Chang-Da Zheng, Jian-Li Zhang, Shuan Pan, Feng-Yi Jiang. Effect of Barrier Temperature on Photoelectric Properties of GaN-Based Yellow LEDs[J]. Chin. Phys. Lett., 2020, 37(3): 078502
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 078502
[4] Xue-Hui Tao, Yong Yang. Theoretical Modeling of Luminous Efficacy for High-Power White Light-Emitting Diodes[J]. Chin. Phys. Lett., 2017, 34(3): 078502
[5] Feng Dai, Xue-Feng Zheng, Pei-Xian Li, Xiao-Hui Hou, Ying-Zhe Wang, Yan-Rong Cao, Xiao-Hua Ma, Yue Hao. The Transport Mechanisms of Reverse Leakage Current in Ultraviolet Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 078502
[6] Ning Zhang, Xue-Cheng Wei, Kun-Yi Lu, Liang-Sen Feng, Jie Yang, Bin Xue, Zhe Liu, Jin-Min Li, Jun-Xi Wang. Effect of Back Diffusion of Mg Dopants on Optoelectronic Properties of InGaN-Based Green Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(11): 078502
[7] Qian-Qian Yu, Xu Zhang, Jing-Xuan Bi, Guan-Ting Liu, Qi-Wen Zhang, Xiao-Ming Wu, Yu-Lin Hua, Shou-Gen Yin. Efficiency of Blue Organic Light-emitting Diodes Enhanced by Employing an Exciton Feedback Layer[J]. Chin. Phys. Lett., 2016, 33(08): 078502
[8] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 078502
[9] Yao Xu, Yu-Ting Zhang, Zhi-Qi Kou, Shuang Cheng, Sheng-Li Bu. A Mixed Host Emitting Interlayer Based on CBP:TPBi in Green Phosphorescent Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2016, 33(04): 078502
[10] Jun Sun, Min Xi, Zi-Sheng Su, Hai-Xiao He, Mi Tian, Hong-Yan Li, Hong-Ke Zhang, Tao Mao, Yu-Xiang Zhang. Highly Efficient Greenish-Yellow Phosphorescent Organic Light-Emitting Diodes Based on a Novel 2,3-Diphenylimidazo[1,2-a]Pyridine Iridium(III) Complex[J]. Chin. Phys. Lett., 2016, 33(03): 078502
[11] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 078502
[12] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 078502
[13] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 078502
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 078502
[15] LIU Wei, LIU Guo-Hong, LIU Yong, LI Bao-Jun, ZHOU Xiang. Improvement of Performance of Organic Light-Emitting Diodes with Both a MoO3 Hole Injection Layer and a MoO3 Doped Hole Transport Layer[J]. Chin. Phys. Lett., 2015, 32(07): 078502
Viewed
Full text


Abstract