CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
High-Efficiency InGaN/GaN Nanorod Arrays by Temperature Dependent Photoluminescence |
WANG Wen-Jie1, CHEN Peng1,2**, YU Zhi-Guo1, LIU Bin1, XIE Zi-Li1, XIU Xiang-Qian1, WU Zhen-Long2, XU Feng2, XU Zhou2, HUA Xue-Mei1, ZHAO Hong1, HAN Ping1, SHI Yi1, ZHANG Rong1, ZHENG You-Dou1 |
1Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 2Nanjing University Institute of Optoelectronics at Yangzhou, Yangzhou 225009
|
|
Cite this article: |
WANG Wen-Jie, CHEN Peng, YU Zhi-Guo et al 2013 Chin. Phys. Lett. 30 078502 |
|
|
Abstract We report on the photoluminescent characteristics of InGaN/GaN multiple quantum well (MQW) nanorod arrays with high internal quantum efficiency. The InGaN/GaN MQWs are grown by metalorganic chemical vapor deposition on c-plane sapphire substrates, and then the MQW nanorod arrays are fabricated by using inductively coupled plasma etching with self-assembled Ni nanoparticle mask with low-damage etching technique. The typical diameter of the nanorods is from 200 nm to 300 nm and the length is around 800 nm, which almost is dislocation free. At room temperature, an enhancement of 3.1 times in total integrated photoluminescence intensity is achieved from the MQW nanorod arrays, in comparison to that of the as-grown MQW structure. Based on the temperature-dependent photoluminescence measurements, the internal quantum efficiency of the nanorod structure is 59.2%, i.e., 1.75 times of as-grown MQW structure (33.8%). Therefore, the nanorod structure with a significant reduction of defects can be a very promising candidate for highly efficient light emitting devices.
|
|
Received: 29 March 2013
Published: 21 November 2013
|
|
|
|
|
|
[1] Nakamura S and Fasol G 2000 Blue Laser Diode (Berlin: Springer) p 4 [2] Wang J X, Wang L, Hao Z B and Luo Y 2011 Chin. Phys. Lett. 28 118105 [3] Peng W C and Wu Y S 2006 Appl. Phys. Lett. 88 181117 [4] Xie Z L, Zhang R, Liu B, Xiu X Q, Su H, Li Y, Hua X M, Zhao H, Chen P, Han P, Shi Y and Zheng Y D 2011 Chin. Phys. Lett. 28 087102 [5] Kuo Y K, Wang T H and Chang J Y 2012 Appl. Phys. Lett. 100 031112 [6] Lin Y S, Ma K J, Hsu C, Chung Y Y, Liu C W, Feng S W, Cheng Y C, Yang C C, Mao M H, Chuang H W, Kuo C T, Tsang J S and Weirich T E 2002 Appl. Phys. Lett. 80 2571 [7] Feng S W, Cheng Y C, Chung Y Y, Yang C C, Lin Y S, Hsu C, Ma K J and Chyi J I 2002 J. Appl. Phys. 92 4441 [8] Chen M K, Cheng Y C, Chen J Y, Wu C M, Yang C C, Ma K J, Yang J R and Rosenauer A 2005 J. Cryst. Growth 279 55 [9] Cheng Y C, Lin E C, Wu C M, Yang C C, Yang J R, Rosenauer A, Ma K J, Shi S C, Chen L C, Pan C C and Chyi J I 2004 Appl. Phys. Lett. 84 2506 [10] Cao X A, Teetsov J M, D'Evelyn M P, Merfeld D W and Yan C H 2004 Appl. Phys. Lett. 85 7 [11] Bell A, Liu R, Ponce F A, Amano H, Akasaki I and Cherns D 2003 Appl. Phys. Lett. 82 349 [12] Nagahama S, Iwasa N, Senoh M, Matsusgita T, Sugimoto Y, Kiyoku H, Kozaki T, Sano M, Matsumura H, Umemoto H, Chocho K and Mukai T 2000 Jpn. J. Appl. Phys. 39 L647 [13] Kikuchi A, Yamada T, Nakamura S, Kusakabe K, Sugihara D and Kishino K 2000 Jpn. J. Appl. Phys. 39 L330 [14] Yu Z G, Chen P, Yang G F, Liu B, Xie Z L, Xiu X Q, Wu Z L, Xu F, Xu Z, Hua X M, Han P, Shi Y, Zhang R and Zheng Y D 2012 Chin. Phys. Lett. 29 078501 [15] Ryu H Y, Hwang J K, Song D S, Han I Y and Lee Y H 2001 Appl. Phys. Lett. 78 1174 [16] Kuo M L, Lee Y J and Shen T C 2009 Opt. Lett. 34 2078 [17] Huh C, Lee K S, Kang E J and Park S J 2003 J. Appl. Phys. 93 9383 [18] Fujii T, Gao Y, Sharma R, Hu E L, DenBaars S P and Nakamura S 2004 Appl. Phys. Lett. 84 855 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|