Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077102    DOI: 10.1088/0256-307X/30/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A Density Functional Study of the Gold Cages MAu16 (M = Si, Ge, and Sn)
TANG Chun-Mei**, ZHU Wei-Hua, ZHANG Ai-Mei, ZHANG Kai-Xiao, LIU Ming-Yi
College of Science, Hohai University, Nanjing 210098
Cite this article:   
TANG Chun-Mei, ZHU Wei-Hua, ZHANG Ai-Mei et al  2013 Chin. Phys. Lett. 30 077102
Download: PDF(806KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Relativistic density functional calculations are performed to explore the promise of MAu16(M=Si, Ge, and Sn) clusters as magic clusters and building blocks in developing cluster-assembled materials. C1 and Cs, two isomers of SiAu16, GeAu16 and SnAu16 with M (Ge or Sn) at the center of the cage, named, respectively, as SiAu16–C1, SiAu16–Cs, GeAu16-center, and SnAu16-center, are calculated to be the most stable. The Au–M bond should have both ionic and covalent characteristics. Their static linear polarizabilities and first-order hyperpolarizabilities are found to be sensitive to the delocalization of the valence electrons of the M atom, as well as their structures and shapes.
Received: 20 March 2013      Published: 21 November 2013
PACS:  71.20.Be (Transition metals and alloys)  
  31.15.xw (Valence bond calculations)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Chun-Mei
ZHU Wei-Hua
ZHANG Ai-Mei
ZHANG Kai-Xiao
LIU Ming-Yi
[1] Bulusu S, Li X, Wang L S and Zeng X C 2006 Proc. Natl. Acad. Sci. USA 103 8326
[2] Chai Y, Guo T, Jin C, Haufler R E, Chibante L P F, Fure J, Wang L and Alford J M, Smalley R E 1991 J. Phys. Chem. 95 7564
[3] Wang L M, Bulusu S, Zhai H J, Zeng X C and Wang L S 2007 Angew. Chem. Int. Ed. 46 2915
[4] Walter M and Hakkinen H 2006 Phys. Chem. Chem. Phys. 8 5407
[5] Shinde P P, Yadav B D and Kumar V 2012 J. Mater. Sci. 47 7642
[6] Pyykk P and Runeberg N 2002 Angew. Chem. Int. Ed. 114 2278
[7] Wang L M, Bulusu S, Huang W, Pal R, Wang L S and Zeng X C 2007 J. Am. Chem. Soc. 129 15136
[8] Sun Q, Wang Q, Chen G and Jena P 2007 J. Chem. Phys. 127 214706
[9] Delley B 1990 J. Chem. Phys. 92 508
[10] Artacho E, Portal D S, Ordejòn P and Garcl`a A 1999 Phys. Status Solidi B 215 809
[11] Pei X Y, Yang X P and Dong J M 2006 Phys. Rev. B 73 195417
[12] Ding C G, Yang J L, Li Q X, Wang K L and Toigo F 1998 Phys. Lett. A 248 49
[13] Delley B 2002 Phys. Rev. B 66 155125
[14] Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
[15] Fletcher R 1980 Practical Methods of Optimization (New York: Wiley)
[16] Aihara J I 1999 Theor. Chem. Acc. 102 134
[17] Yoo S and Zeng X C 2005 Angew. Chem. Int. Ed. 44 1491
[18] Gao Y, Bulusu S and Zeng X C 2005 J. Am. Chem. Soc. 127 15680
[19] Autschbach J, Hess B A, Johansson M P, Neugebauer J, Patzschke M, Pyykk P, Reiher M and Sundholm D 2004 Phys. Chem. Chem. Phys. 6 11
[20] Li X, Kiran B, Li J, Zhai H J and Wang L S 2002 Angew. Chem. Int. Ed. 114 4980
[21] Gao Y and Zeng X C 2005 J. Am. Chem. Soc. 127 3698
[22] Denisenko N I, Troyanov S I, Popov A A, Kuvychko I V, Zemva B, Kemnitz E, Strauss S H and Boltalina O V 2004 J. Am. Chem. Soc. 126 1618
[23] Han Y K 2006 J. Chem. Phys. 124 024316
[24] Wang J and Han J G 2007 Chem. Phys. 342 253
[25] Han X, Zhou S J, Tan Y Z, Wu X, Gao F, Liao Z J, Huang R B, Feng Y Q, Lu X, Xie S Y and Zheng L S 2008 Angew. Chem. Int. Ed. 47 5340
[26] Geerings P, Proft F D and Langenaeker W 2003 Chem. Rev. 103 1793
[27] Smith D W 1998 J. Chem. Soc. Faraday Trans. 94 201
[28] Rollefson G K and Dodgen H W 1944 J. Chem. Phys. 12 107
[29] Li R J, Li Z R, Wu D, Hao X Y, Li Y, Wang B Q, Tao F M and Sun C C 2003 Chem. Phys. Lett. 372 893
[30] Parr R G, Szentpály L V and Liu S 1999 J. Am. Chem. Soc. 121 1922
[31] Zagorodniy K, Taut M and Hermann H 2006 Phys. Rev. A 73 054501
[32] Xie R H, Bryant G W and Smith V H 2003 Chem. Phys. Lett. 368 486
Related articles from Frontiers Journals
[1] Pan Nie, Huakun Zuo, Lingxiao Zhao, and Zengwei Zhu. Anisotropic Fermi Surfaces, Electrical Transport, and Two-Dimensional Fermi Liquid Behavior in Layered Ternary Boride MoAlB[J]. Chin. Phys. Lett., 2022, 39(5): 077102
[2] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 077102
[3] Yequan Chen, Ruxin Liu, Yongda Chen, Xiao Yuan, Jiai Ning, Chunchen Zhang, Liming Chen, Peng Wang, Liang He, Rong Zhang, Yongbing Xu, and Xuefeng Wang. Large-Area Freestanding Weyl Semimetal WTe$_{2}$ Membranes[J]. Chin. Phys. Lett., 2021, 38(1): 077102
[4] Yequan Chen, Yongda Chen, Jiai Ning, Liming Chen, Wenzhuo Zhuang, Liang He, Rong Zhang, Yongbing Xu, Xuefeng Wang. Observation of Shubnikov-de Haas Oscillations in Large-Scale Weyl Semimetal WTe$_{2}$ Films[J]. Chin. Phys. Lett., 2020, 37(1): 077102
[5] Xiang-Wei Huang, Xiao-Xiong Liu, Peng Yu, Pei-Ling Li, Jian Cui, Jian Yi, Jian-Bo Deng, Jie Fan, Zhong-Qing Ji, Fan-Ming Qu, Xiu-Nian Jing, Chang-Li Yang, Li Lu, Zheng Liu, Guang-Tong Liu. Magneto-Transport and Shubnikov–de Haas Oscillations in the Type-II Weyl Semimetal Candidate NbIrTe$_{4}$ Flake[J]. Chin. Phys. Lett., 2019, 36(7): 077102
[6] D. S. Wu, Z. Y. Mi, Y. J. Li, W. Wu, P. L. Li, Y. T. Song, G. T. Liu, G. Li, J. L. Luo. Single Crystal Growth and Magnetoresistivity of Topological Semimetal CoSi[J]. Chin. Phys. Lett., 2019, 36(7): 077102
[7] Lin Feng, Xue-Ying Zhang. First-Principles Investigation on the Fully Compensated Ferrimagnetic Behavior in Ti$_{2}$NbSb and TiZrNbSb[J]. Chin. Phys. Lett., 2019, 36(6): 077102
[8] J. E. Taylor, Z. Zhang, G. Cao, L. H. Haber, R. Jin, E. W. Plummer. Electronic Phase Transition of IrTe$_{2}$ Probed by Second Harmonic Generation[J]. Chin. Phys. Lett., 2018, 35(9): 077102
[9] Ning-Ning Zu, Rui Li, Ya-Hui Zheng, Lin Chen. First-Principles Calculation for the Half Metallic Properties of La$_{2}$NbMnO$_{6}$[J]. Chin. Phys. Lett., 2017, 34(10): 077102
[10] YI Zhi-Jun. Quasi-Particle Properties in Copper Using the GW Approximation[J]. Chin. Phys. Lett., 2015, 32(01): 077102
[11] H. A. Rahnamaye Aliabad, M. Bazrafshan, H. Vaezi, Masood Yousaf, Junaid Munir, M. A. Saeed. Optoelectronic Properties of Pure and Co Doped Indium Oxide by Hubbard and modified Becke–Johnson Exchange Potentials[J]. Chin. Phys. Lett., 2013, 30(12): 077102
[12] QI Chen-Jin, FENG Jing, ZHOU Rong-Feng, JIANG Ye-Hua, ZHOU Rong. First Principles Study on the Stability and Mechanical Properties of MB (M=V, Nb and Ta) Compounds[J]. Chin. Phys. Lett., 2013, 30(11): 077102
[13] LIU Yue-Lin, GAO An-Yuan, LU Wei, ZHOU Hong-Bo, ZHANG Ying. Optimal Electron Density Mechanism for Hydrogen on the Surface and at a Vacancy in Tungsten[J]. Chin. Phys. Lett., 2012, 29(7): 077102
[14] LIU Yue-Lin, ZHOU Hong-Bo, JIN Shuo, ZHANG Ying, LU Guang-Hong . Effects of H on Electronic Structure and Ideal Tensile Strength of W: A First-Principles Calculation[J]. Chin. Phys. Lett., 2010, 27(12): 077102
[15] SHI Li-Wei, DUAN Yi-Feng, YANG Xian-Qing, QIN Li-Xia. Structural, Electronic and Elastic Properties of Cubic Perovskites SrSnO3 and SrZrO3 under Hydrostatic Pressure Effect[J]. Chin. Phys. Lett., 2010, 27(9): 077102
Viewed
Full text


Abstract