Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077201    DOI: 10.1088/0256-307X/30/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhanced Performance and Stability in Polymer Photovoltaic Cells Using Ultraviolet-Treated PEDOT:PSS
XU Xue-Jian1,2, YANG Li-Ying1,2**, TIAN Hui1,2, QIN Wen-Jing1,2**, YIN Shou-Gen1,2**, ZHANG Fengling1,3
1Key Laboratory of Display Materials and Photoelectric Devices (Ministry of Education) and School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384
2Tianjin Key Lab for Photoelectric Materials and Devices, Tianjin 300384
3Biomolecular and Organic Electronics, Center of Organic Electronics, Department of Physics, Chemistry and Biology (IFM), Link?ping University, SE-581 83 Link?ping, Sweden
Cite this article:   
XU Xue-Jian, YANG Li-Ying, TIAN Hui et al  2013 Chin. Phys. Lett. 30 077201
Download: PDF(859KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of ultraviolet (UV) irradiation treatment with varying irradiation intensities for different treatment times of poly(3, 4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) film on the performance and stability of polymer solar cells (PSCs) based on regioregular poly(3-hexylthiophene) (P3HT) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend. Ultraviolet-visible transmission spectra, x-ray photoelectron spectroscopy, contact angle measurement, atomic force microscopy and the Kelvin probe method are conducted to characterize the UV-treated PEDOT:PSS film. The results demonstrate that UV treatment can improve the power conversion efficiency (PCE) and stability of PSCs effectively. The best performance is achieved under 1200 μW/cm2 UV treatment for 50 min. Compared to the control device, the optimized device exhibits enhanced performance with a Voc of 0.59 V, Jsc of 12.3 mA/cm2, fill factor of 51%, and PCE of 3.64%, increased by 3.5%, 33%, 8.7% and 50%, respectively. The stability of the PSCs is enhanced by 2.5 times simply through the UV treatment on the PEDOT:PSS buffer layer. The improvement in the device performance and stability is attributed to the improvement in the wettability property and the increase in the work function of the PEDOT:PSS film by UV treatment, while the impact of UV treatment on the transparency of the PEDOT:PSS film is negligible. The strategy of using UV treatment to improve device performance and stability is attractive due to its simplicity, cost-effectiveness, and because it is suitable for large-scale commercial production.
Received: 22 March 2013      Published: 21 November 2013
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  88.40.jr (Organic photovoltaics)  
  72.40.+w (Photoconduction and photovoltaic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Xue-Jian
YANG Li-Ying
TIAN Hui
QIN Wen-Jing
YIN Shou-Gen
ZHANG Fengling
[1] Robert F S 2011 Science 332 293
[2] Krebs F C 2009 Sol. Energy Mater. Sol. Cells 93 394
[3] Krebs F C et al 2010 J. Mater. Chem. 20 8994
[4] He Z C et al 2011 Adv. Mater. 23 4636
[5] He Z C et al 2012 Nat. Photon. 6 591
[6] Guo X Y et al 2012 Chin. Phys. Lett. 29 088801
[7] Chen Z et al 2012 Chin. Phys. Lett. 29 078801
[8] Yang L Y et al 2010 Sol. Energy Mater. Sol. Cells 94 1831
[9] Wang Y L et al 2011 Sol. Energy Mater. Sol. Cells 95 1243
[10] Zhang F et al 2002 Adv. Mater. 14 662
[11] Groenendaal L et al 2000 Adv. Mater. 12 481
[12] Yin B et al 2010 J. Nanosci. Nanotechnol. 10 1934
[13] Fan B H et al 2008 Macromolecules 41 5971
[14] Alemu Desalegn et al 2012 Energy Environ. Sci. 5 9662
[15] Kim H et al 2012 Nanoscale Res. Lett. 7 5
[16] Xia Y J and Ouyang J Y 2011 J. Mater. Chem. 21 4927
[17] Kim Y K et al 2009 Org. Electron. 10 205
[18] Xia Y J et al 2010 J. Mater. Chem. 20 9740
[19] Lin Y J et al 2007 Appl. Phys. Lett. 91 092127
[20] Lee H K et al 2009 Org. Electron. 10 1641
[21] Su Z S et al 2012 Nanoscale Res. Lett. 7 465
[22] Tengstedt C et al 2006 Thin Solid Films 515 2085
[23] Lang U et al 2009 Adv. Funct. Mater. 19 1215
[24] Kemerink M et al 2004 J. Phys. Chem. B 108 18820
[25] Vitoratos E et al 2009 Org. Electron. 10 61
[26] Greczynski G et al 2001 J. Electron Spectrosc. Relat. Phenom. 121 1
[27] Wagner C D et al Handbook of x-ray photoelectron spectroscopy (Minnesota: Perking-Elmer Corporation Physical Electronics Division) vol 5 p 12
[28] Xing K Z et al 1997 Synth. Met. 89 161
[29] Kim Y H et al 2011 Adv. Funct. Mater. 21 1076
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 077201
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 077201
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 077201
[4] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 077201
[5] Min-Nan Guo, Shao-Wei Liu, Na Guo, Li-Ying Yang, Wen-Jing Qin, Shou-Gen Yin. Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct[J]. Chin. Phys. Lett., 2016, 33(07): 077201
[6] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 077201
[7] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 077201
[8] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 077201
[9] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 077201
[10] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 077201
[11] MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode[J]. Chin. Phys. Lett., 2015, 32(09): 077201
[12] ZHANG Hong-Mei, WANG Dan-Bei, ZENG Wen-Jin, YAN Min-Nan. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures[J]. Chin. Phys. Lett., 2015, 32(09): 077201
[13] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 077201
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 077201
[15] ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen. Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer[J]. Chin. Phys. Lett., 2015, 32(07): 077201
Viewed
Full text


Abstract