CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Effect of Intraband Transitions on the Optical Spectra of Metallic Carbon Nanotubes |
T. Movlarooy* |
Department of Physics, University of Shahrood, Shahrood, Iran
|
|
Cite this article: |
T. Movlarooy 2013 Chin. Phys. Lett. 30 077301 |
|
|
Abstract First-principles calculations of the electronic structure and linear optical properties of metallic carbon nanotubes are carried out using the full-potential linear-augmented plane-wave method. The effect of intraband transition and electric-field polarization on the optical spectra of (5,2) chiral, (15,0) zigzag, and (8,8) armchair metallic carbon nanotubes are investigated. The optical spectra are calculated for both electric-field polarizations, parallel and perpendicular to the axis of the tube. It is revealed that the optical spectra are anisotropic along these two polarizations. For the parallel polarization to the tube axis, adding the intraband transition contributions shows that the dielectric function has singularity at zero frequency due to the screening effect in metallic carbon nanotubes.
|
|
Received: 07 March 2013
Published: 21 November 2013
|
|
PACS: |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
78.20.Bh
|
(Theory, models, and numerical simulation)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.67.Ch
|
(Nanotubes)
|
|
|
|
|
[1] Iijima S 1991 Nature 354 56 [2] Tasaki S, Maekawa K and Yamabe T 1998 Phys. Rev. B 57 9301 [3] Bozovic I, Bozovic N and Damnjanovic M 2000 Phys. Rev. B 62 6971 [4] Alon O E, Averbukh V and Moiseyev N 2000 Phys. Rev. Lett. 85 5218 [5] Ivchenko E L and Spivak B 2002 Phys. Rev. B 66 155404 [6] Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E and Weisman R B 2002 Science 298 2361 [7] Li Z M, Tang Z K, Liu H J, Wang N, Chan C T, Saito R, Okada S, Li G D, Chen J S, Nagasawa N and Tsuda S 2001 Phys. Rev. Lett. 87 127401 [8] O'Connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C, Ma J, Hauge R H, Weisman R and Smalley R E 2002 Science 297 593 [9] Deslippe J, Dipoppa M, Prendergast D, Moutinho M V O, Capaz R B and Louie S G 2009 Nano Lett. 9 1330 [10] Zhao X, Liu Y, Inoue S, Suzuki T, Jones R O and Ando Y 2004 Phys. Rev. Lett. 92 125502 [11] Tang Z K, Zhai J P, Tong Y Y, Hu X J, Saito R, Feng Y J and Sheng Ping 2008 Phys. Rev. Lett. 101 047402 [12] Mao Y L, Yan X H, Xiao Y, Xiang J, Yang Y R and Yu H L 2004 Nanotechnology 15 1000 [13] Mao Y L, Yan X H, Xiao Y, Xiang J, Yang Y R and Yu H L 2005 Phys. Rev. B 71 033404 [14] Vahedi Fakhrabad D, Movlarooy T and Shahtahmasebi N 2012 Phys. Status Solidi B 249 1027 [15] Deslippe J, Spataru C D, Prendergast D and Louie S G 2007 Nano Lett. 7 1626 [16] Movlarooy T, Hosseini S M, Kompany A and Shahtahmasebi N 2010 Comput. Mater. Sci. 49 450 [17] Movlarooy T, Hosseini S M, Kompany A and Shahtahmasebi N 2011 Int. J. Nanosci. 10 587 [18] Spataru C D, IsmailBeigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402 [19] Chang E, Bussi G, Ruini A and Molinari E 2004 Phys. Rev. Lett. 92 196401 [20] Marinopoulos A G, Reining L, Rubio A and Vast N 2003 Phys. Rev. Lett. 91 046402 [21] Marinopoulos A G, Wirtz L, Marini A, Olevano V, Rubio A and Reining L 2004 Appl. Phys. A 78 1157 [22] Blaha P, Singh D, Sorantin P I and Schwarz K 1992 Phys. Rev. B 46 1321 [23] Blaha P and Schwarz K 2002 WIEN2k, http://www.wien2k.at/, Vienna University of Technology Austria [24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [25] Peterson M, Wanger F, Hufnagel L, Scheffler M, Blaha P and Schwarz K 2000 Comput. Phys. Commun. 126 294 [26] Wooten F 1972 Optical Properties of Solids (New York: Academic Press) chap 6 [27] AmbroschDraxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|