Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077301    DOI: 10.1088/0256-307X/30/7/077301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Effect of Intraband Transitions on the Optical Spectra of Metallic Carbon Nanotubes
T. Movlarooy*
Department of Physics, University of Shahrood, Shahrood, Iran
Cite this article:   
T. Movlarooy 2013 Chin. Phys. Lett. 30 077301
Download: PDF(548KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract First-principles calculations of the electronic structure and linear optical properties of metallic carbon nanotubes are carried out using the full-potential linear-augmented plane-wave method. The effect of intraband transition and electric-field polarization on the optical spectra of (5,2) chiral, (15,0) zigzag, and (8,8) armchair metallic carbon nanotubes are investigated. The optical spectra are calculated for both electric-field polarizations, parallel and perpendicular to the axis of the tube. It is revealed that the optical spectra are anisotropic along these two polarizations. For the parallel polarization to the tube axis, adding the intraband transition contributions shows that the dielectric function has singularity at zero frequency due to the screening effect in metallic carbon nanotubes.
Received: 07 March 2013      Published: 21 November 2013
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
  78.67.Ch (Nanotubes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Movlarooy
[1] Iijima S 1991 Nature 354 56
[2] Tasaki S, Maekawa K and Yamabe T 1998 Phys. Rev. B 57 9301
[3] Bozovic I, Bozovic N and Damnjanovic M 2000 Phys. Rev. B 62 6971
[4] Alon O E, Averbukh V and Moiseyev N 2000 Phys. Rev. Lett. 85 5218
[5] Ivchenko E L and Spivak B 2002 Phys. Rev. B 66 155404
[6] Bachilo S M, Strano M S, Kittrell C, Hauge R H, Smalley R E and Weisman R B 2002 Science 298 2361
[7] Li Z M, Tang Z K, Liu H J, Wang N, Chan C T, Saito R, Okada S, Li G D, Chen J S, Nagasawa N and Tsuda S 2001 Phys. Rev. Lett. 87 127401
[8] O'Connell M J, Bachilo S M, Huffman C B, Moore V C, Strano M S, Haroz E H, Rialon K L, Boul P J, Noon W H, Kittrell C, Ma J, Hauge R H, Weisman R and Smalley R E 2002 Science 297 593
[9] Deslippe J, Dipoppa M, Prendergast D, Moutinho M V O, Capaz R B and Louie S G 2009 Nano Lett. 9 1330
[10] Zhao X, Liu Y, Inoue S, Suzuki T, Jones R O and Ando Y 2004 Phys. Rev. Lett. 92 125502
[11] Tang Z K, Zhai J P, Tong Y Y, Hu X J, Saito R, Feng Y J and Sheng Ping 2008 Phys. Rev. Lett. 101 047402
[12] Mao Y L, Yan X H, Xiao Y, Xiang J, Yang Y R and Yu H L 2004 Nanotechnology 15 1000
[13] Mao Y L, Yan X H, Xiao Y, Xiang J, Yang Y R and Yu H L 2005 Phys. Rev. B 71 033404
[14] Vahedi Fakhrabad D, Movlarooy T and Shahtahmasebi N 2012 Phys. Status Solidi B 249 1027
[15] Deslippe J, Spataru C D, Prendergast D and Louie S G 2007 Nano Lett. 7 1626
[16] Movlarooy T, Hosseini S M, Kompany A and Shahtahmasebi N 2010 Comput. Mater. Sci. 49 450
[17] Movlarooy T, Hosseini S M, Kompany A and Shahtahmasebi N 2011 Int. J. Nanosci. 10 587
[18] Spataru C D, IsmailBeigi S, Benedict L X and Louie S G 2004 Phys. Rev. Lett. 92 077402
[19] Chang E, Bussi G, Ruini A and Molinari E 2004 Phys. Rev. Lett. 92 196401
[20] Marinopoulos A G, Reining L, Rubio A and Vast N 2003 Phys. Rev. Lett. 91 046402
[21] Marinopoulos A G, Wirtz L, Marini A, Olevano V, Rubio A and Reining L 2004 Appl. Phys. A 78 1157
[22] Blaha P, Singh D, Sorantin P I and Schwarz K 1992 Phys. Rev. B 46 1321
[23] Blaha P and Schwarz K 2002 WIEN2k, http://www.wien2k.at/, Vienna University of Technology Austria
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Peterson M, Wanger F, Hufnagel L, Scheffler M, Blaha P and Schwarz K 2000 Comput. Phys. Commun. 126 294
[26] Wooten F 1972 Optical Properties of Solids (New York: Academic Press) chap 6
[27] AmbroschDraxl C and Sofo J O 2006 Comput. Phys. Commun. 175 1
Related articles from Frontiers Journals
[1] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Erratum: Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$ [Chin. Phys. Lett. 39, 127302 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 077301
[2] A. Azarevich, N. Bolotina, O. Khrykina, A. Bogach, E. Zhukova, B. Gorshunov, A. Melentev, Z. Bedran, A. Alyabyeva, M. Belyanchikov, V. Voronov, N. Yu. Shitsevalova, V. B. Filipov, and N. Sluchanko. Evidence of Electronic Phase Separation in the Strongly Correlated Semiconductor YbB$_{12}$[J]. Chin. Phys. Lett., 2022, 39(12): 077301
[3] Yawen Guo, Wenqi Jiang, Xinru Wang, Fei Wan, Guanqing Wang, G. H. Zhou, Z. B. Siu, Mansoor B. A. Jalil, and Yuan Li. Effect of Geometrical Structure on Transport Properties of Silicene Nanoconstrictions[J]. Chin. Phys. Lett., 2021, 38(12): 077301
[4] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 077301
[5] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 077301
[6] Ming-Liang Zhang , Xu-Ming Zou , and Xing-Qiang Liu. Surface Modification for WSe$_{2}$ Based Complementary Electronics[J]. Chin. Phys. Lett., 2020, 37(11): 077301
[7] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 077301
[8] Yu-Lu Zheng , Liang Li, Fang-Fei Li , Qiang Zhou, and Tian Cui . Pressure-Dependent Phonon Scattering of Layered GaSe Prepared by Mechanical Exfoliation[J]. Chin. Phys. Lett., 2020, 37(8): 077301
[9] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 077301
[10] Yonghao Yuan, Xintong Wang, Canli Song, Lili Wang, Ke He, Xucun Ma, Hong Yao, Wei Li, Qi-Kun Xue. Observation of Coulomb Gap and Enhanced Superconducting Gap in Nano-Sized Pb Islands Grown on SrTiO$_{3}$[J]. Chin. Phys. Lett., 2020, 37(1): 077301
[11] Rui-Zhe Liu, Xiong Huang, Ling-Xiao Zhao, Li-Min Liu, Jia-Xin Yin, Rui Wu, Gen-Fu Chen, Zi-Qiang Wang, Shuheng H. Pan. Experimental Observations Indicating the Topological Nature of the Edge States on HfTe$_{5}$[J]. Chin. Phys. Lett., 2019, 36(11): 077301
[12] Lu-Lu Yang, Jun-Jie Shi, Min Zhang, Zhong-Ming Wei, Yi-Min Ding, Meng Wu, Yong He, Yu-Lang Cen, Wen-Hui Guo, Shu-Hang Pan, Yao-Hui Zhu. The 2D InSe/WS$_2$ Heterostructure with Enhanced Optoelectronic Performance in the Visible Region[J]. Chin. Phys. Lett., 2019, 36(9): 077301
[13] Hong-Ping Yang, Hai-Hong Bao, Li-Li Han, Wen-Juan Yuan, Jun Luo, Jing Zhu. Different Charging-Induced Modulations of Highest Occupied Molecular Orbital Energies in Fullerenes in Comparison with Carbon Nanotubes and Graphene Sheets[J]. Chin. Phys. Lett., 2018, 35(12): 077301
[14] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 077301
[15] Yue-Qin Wang, Yin Liu, Ming-Xu Zhang, Fan-Fei Min. Electronic Structure and Visible-Light Absorption of Transition Metals (TM=Cr, Mn, Fe, Co) and Zn-Codoped SrTiO$_{3}$: a First-Principles Study[J]. Chin. Phys. Lett., 2018, 35(1): 077301
Viewed
Full text


Abstract