Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077101    DOI: 10.1088/0256-307X/30/7/077101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Structural, Electronic and Elastic Properties, and the Raman Spectra of Orthorhombic CaSnO3 through First Principles Calculations
A. Yangthaisong**
Computational Materials and Device Physics Group, Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubonratchathani 34190, Thailand
Cite this article:   
A. Yangthaisong 2013 Chin. Phys. Lett. 30 077101
Download: PDF(544KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract First principles calculations based on the density functional theory of the electronic structure, elastic and lattice vibrational properties of orthorhombic CaSnO3 are carried out using standard functional approximation and density functional perturbation theory. The results show that CaSnO3 is an insulator with an indirect local density approximation and generalized gradient approximation gap of 3.10(2.69) eV. In addition, the Raman vibration modes of CaSnO3 are determined by the calculated phonon frequencies at the gamma point, where the prominent peaks of the Raman spectra of CaSnO3 coinciding with the calculated frequencies can be assigned.
Received: 02 February 2013      Published: 21 November 2013
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  36.20.Ng (Vibrational and rotational structure, infrared and Raman spectra)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Yangthaisong
[1] Lu Z, Liu J, Tang J and Li Y 2004 Inorg. Chem. Commun. 7 231
[2] Jiang X, Wong F L, Fung M K and Lee S T 2003 Appl. Phys. Lett. 83 1875
[3] Helffrich G R and Wood B J 2001 Nature 412 501
[4] Tateno S, Hirose K, Satab N and Ohishic Y 2010 Phys. Earth Planet. Inter. 181 54
[5] Mizoguchi H and Woodward P M 2004 Chem. Mater. 16 5233
[6] Henriques J M, Caetano E W S, Freire V N, Da Costa J A P and Albuquerque E L 2007 J. Phys.: Condens. Matter 19 106214
[7] Tsuchiya T and Tsuchiya J 2006 Am. Mineral. 91 1879
[8] Kung J, Lin Y J and Lin C M 2011 J. Chem. Phys. 135 224507
[9] Clark S J, Segall M D, Pikard C J, Hasnip P J, Robert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567
[10] http://opium.sourceforge.net
[11] Vanderbilt D 1990 Phys. Rev. B 41 7892
[12] Ceperly D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[13] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[14] J P Perdew, K Burke and M Ernzerhof 1996 Phys. Rev. Lett. 77 3865
[15] Monkhorst H and Pack J D 1976 Phys. Rev. B 13 5188
[16] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768
[17] Baroni S, Gironcoli S de, Corso A dal and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[18] Refson K, Tulip P R and Clark S J 2006 Phys. Rev. B 73 155114
[19] Zhao J, Ross N L and Angel R J 2004 Phys. Chem. Miner.. 31 299
[20] Rappe A M, Rabe K M, Kaxiras E and Joannopoulos J D 1990 Phys. Rev. B 41 1227
[21] Meyer M, Onida G, Palummo M and Reining L 2001 Phys. Rev. B 64 045119
[22] Mountstevens E H, Attfield J P and Redfern S A T 2005 J. Phys.: Condens. Matter 15 8315
[23] Beckstein O, Klepeis J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112
[24] Kung J, Angle R J and Ross N L 2001 Phys. Chem. Miner. 28 35
[25] Reuss A and Angew Z 1929 Math. Mech. 9 49
[26] Hill R 1952 Proc. Phys. Soc. London Sect. A 5 349
[27] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner)
[28] McMillan P and Ross N 1988 Phys. Chem. Miner. 16 21
[29] Tarrida M, Larguem H and Madon M 2009 Phys. Chem. Miner. 36 403
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 077101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 077101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 077101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 077101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 077101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 077101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 077101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 077101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 077101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 077101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 077101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 077101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 077101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 077101
Viewed
Full text


Abstract