CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Structural, Electronic and Elastic Properties, and the Raman Spectra of Orthorhombic CaSnO3 through First Principles Calculations |
A. Yangthaisong** |
Computational Materials and Device Physics Group, Department of Physics, Faculty of Science, Ubon Ratchathani University, Ubonratchathani 34190, Thailand
|
|
Cite this article: |
A. Yangthaisong 2013 Chin. Phys. Lett. 30 077101 |
|
|
Abstract First principles calculations based on the density functional theory of the electronic structure, elastic and lattice vibrational properties of orthorhombic CaSnO3 are carried out using standard functional approximation and density functional perturbation theory. The results show that CaSnO3 is an insulator with an indirect local density approximation and generalized gradient approximation gap of 3.10(2.69) eV. In addition, the Raman vibration modes of CaSnO3 are determined by the calculated phonon frequencies at the gamma point, where the prominent peaks of the Raman spectra of CaSnO3 coinciding with the calculated frequencies can be assigned.
|
|
Received: 02 February 2013
Published: 21 November 2013
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
36.20.Ng
|
(Vibrational and rotational structure, infrared and Raman spectra)
|
|
|
|
|
[1] Lu Z, Liu J, Tang J and Li Y 2004 Inorg. Chem. Commun. 7 231 [2] Jiang X, Wong F L, Fung M K and Lee S T 2003 Appl. Phys. Lett. 83 1875 [3] Helffrich G R and Wood B J 2001 Nature 412 501 [4] Tateno S, Hirose K, Satab N and Ohishic Y 2010 Phys. Earth Planet. Inter. 181 54 [5] Mizoguchi H and Woodward P M 2004 Chem. Mater. 16 5233 [6] Henriques J M, Caetano E W S, Freire V N, Da Costa J A P and Albuquerque E L 2007 J. Phys.: Condens. Matter 19 106214 [7] Tsuchiya T and Tsuchiya J 2006 Am. Mineral. 91 1879 [8] Kung J, Lin Y J and Lin C M 2011 J. Chem. Phys. 135 224507 [9] Clark S J, Segall M D, Pikard C J, Hasnip P J, Robert M J, Refson K and Payne M C 2005 Z. Kristallogr. 220 567 [10] http://opium.sourceforge.net [11] Vanderbilt D 1990 Phys. Rev. B 41 7892 [12] Ceperly D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [13] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [14] J P Perdew, K Burke and M Ernzerhof 1996 Phys. Rev. Lett. 77 3865 [15] Monkhorst H and Pack J D 1976 Phys. Rev. B 13 5188 [16] Fischer T H and Almlof J 1992 J. Phys. Chem. 96 9768 [17] Baroni S, Gironcoli S de, Corso A dal and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [18] Refson K, Tulip P R and Clark S J 2006 Phys. Rev. B 73 155114 [19] Zhao J, Ross N L and Angel R J 2004 Phys. Chem. Miner.. 31 299 [20] Rappe A M, Rabe K M, Kaxiras E and Joannopoulos J D 1990 Phys. Rev. B 41 1227 [21] Meyer M, Onida G, Palummo M and Reining L 2001 Phys. Rev. B 64 045119 [22] Mountstevens E H, Attfield J P and Redfern S A T 2005 J. Phys.: Condens. Matter 15 8315 [23] Beckstein O, Klepeis J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112 [24] Kung J, Angle R J and Ross N L 2001 Phys. Chem. Miner. 28 35 [25] Reuss A and Angew Z 1929 Math. Mech. 9 49 [26] Hill R 1952 Proc. Phys. Soc. London Sect. A 5 349 [27] Voigt W 1928 Lehrburch der Kristallphysik (Leipzig: Teubner) [28] McMillan P and Ross N 1988 Phys. Chem. Miner. 16 21 [29] Tarrida M, Larguem H and Madon M 2009 Phys. Chem. Miner. 36 403 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|