Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 076402    DOI: 10.1088/0256-307X/30/7/076402
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Partial Order in Potts Models on the Generalized Decorated Square Lattice
QIN Ming-Pu1, CHEN Jing1, CHEN Qiao-Ni2, XIE Zhi-Yuan1, KONG Xin1, ZHAO Hui-Hai1, Bruce Normand3, XIANG Tao1**
1Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, USA
3Department of Physics, Renmin University of China, Beijing 100872
Cite this article:   
QIN Ming-Pu, CHEN Jing, CHEN Qiao-Ni et al  2013 Chin. Phys. Lett. 30 076402
Download: PDF(719KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We explore the Potts model on the generalized decorated square lattice, with both nearest (J1) and next-nearest (J2) neighbor interactions. Using the tensor renormalization-group method augmented by higher order singular value decompositions, we calculate the spontaneous magnetization of the Potts model with q = 2, 3, and 4. The results for q = 2 allow us to benchmark our numerics using the exact solution. For q = 3, we find a highly degenerate ground state with partial order on a single sublattice, but with vanishing entropy per site, and we obtain the phase diagram as a function of the ratio J2/J1. There is no finite-temperature transition for the q = 4 case when J1 = J2, whereas the magnetic susceptibility diverges as the temperature goes to zero, showing that the model is critical at T = 0.
Received: 28 April 2013      Published: 21 November 2013
PACS:  64.60.Cn (Order-disorder transformations)  
  05.50.+q (Lattice theory and statistics)  
  75.10.Hk (Classical spin models)  
  64.60.F- (Equilibrium properties near critical points, critical exponents)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/076402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/076402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Ming-Pu
CHEN Jing
CHEN Qiao-Ni
XIE Zhi-Yuan
KONG Xin
ZHAO Hui-Hai
Bruce Normand
XIANG Tao
[1] Wu F Y 1982 Rev. Mod. Phys. 54 235
[2] Salas J and Sokal A D 1997 J. Stat. Phys. 86 551
[3] Kotecky R, Salas J and Sokal A D 2008 Phys. Rev. Lett. 101 030601
[4] Chen Q N, Qin M P, Chen J, Wei Z C, Zhao H H, Normand B and Xiang T 2011 Phys. Rev. Lett. 107 165701
[5] Deng Y J, Huang Y, Jacobsen J L, Salas J and Sokal A D 2011 Phys. Rev. Lett. 107 150601
[6] Diep H T and Debauche M 1991 Phys. Rev. B 43 8759
[7] Lipowski A and Horiguchi T 1995 J. Phys. A 28 3371
[8] Quartu R and Diep H T 1997 Phys. Rev. B 55 2975
[9] Wu F Y 1980 J. Stat. Phys. 23 773
[10] Matsuda Y, Kasai Y and Syozi I 1981 Prog. Theor. Phys. 65 1091
[11] Hajdukovic D 1983 J. Phys. A 16 2881
[12] Nightingale M P and Schick M 1982 J. Phys. A 15 L39
[13] Den Nijs M P M, Nightingale M P and Schick M 1982 Phys. Rev. B 26 2490
[14] Racz Z and Vicsek T 1983 Phys. Rev. B 27 2992
[15] Reed P 1985 J. Phys. C 18 L901
[16] Ferreira S J and Sokal A D 1999 J. Stat. Phys. 96 461
[17] Debauche M, Diep H T, Azaria P and Giacomini H 1991 Phys. Rev. B 44 2369
[18] Azaria P, Diep H T and Giacomini H 1987 Phys. Rev. Lett. 59 1629
[19] Zhao Y, Li W, Xi B, Zhang Z, Yan X, Ran S J, Liu T and Su G 2013 Phys. Rev. E 87 032151
[20] Levin M and Nave C P 2003 Phys. Rev. Lett. 90 120601
[21] Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W and Xiang T 2010 Phys. Rev. B 81 174411
[22] Grest G S and Banavar J R 1981 Phys. Rev. Lett. 46 1458
[23] Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P and Xiang T 2012 Phys. Rev. B 86 045139
[24] Xie Z Y, Jiang H C, Chen Q N, Weng Z Y and Xiang T 2009 Phys. Rev. Lett. 103 160601
[25] Vidal G 2007 Phys. Rev. Lett. 98 070201
[26] Vidal G 2007 Phys. Rev. B 76 155117
[27] De Queiroz S L A, Paiva T, De Sa Martins J S and Dos Santos R R 1999 Phys. Rev. E 59 2772
[28] Wannier G H 1950 Phys. Rev. 79 357
[29] Stephenson J 1970 J. Math. Phys. 11 413
[30] Moore C and Newman M E J 2000 J. Stat. Phys. 99 629
Related articles from Frontiers Journals
[1] Li-Xia Qin, Han-Pu Liang, Rong-Li Jiang. Structural Transition from Ordered to Disordered of BeZnO$_2$ Alloy[J]. Chin. Phys. Lett., 2020, 37(5): 076402
[2] Dong-Yi Wang, Cheng Tan, Kevin Huang, Lei Shu. The Complex Magnetism in the Breathing Pyrochlore LiIn(Cr$_{1-x}$Rh$_x$)$_4$O$_8$[J]. Chin. Phys. Lett., 2016, 33(12): 076402
[3] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 076402
[4] BAI Xiao-Dong, XUE Ju-Kui. Subdiffusion of Dipolar Gas in One-Dimensional Quasiperiodic Potentials[J]. Chin. Phys. Lett., 2015, 32(01): 076402
[5] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 076402
[6] XU Zhen, DUAN Ya-Fan, ZHOU Shu-Yu, HONG Tao, WANG Yu-Zhu. Effects of Atom-Atom Interaction on Localization and Adiabaticity of BEC in One-Dimensional Disorder Optical Lattice[J]. Chin. Phys. Lett., 2009, 26(9): 076402
[7] SUN Rong-Sheng, HUA Da-Yin. Synchronization of Local Oscillations in a Spatial Rock-Scissors-Paper Game Model[J]. Chin. Phys. Lett., 2009, 26(8): 076402
[8] YANG Bin, LAI Wen-Sheng. Molecular Dynamics Study of Stability of Solid Solutions and Amorphous Phase in the Cu-Al System[J]. Chin. Phys. Lett., 2009, 26(6): 076402
[9] LU Chang-Hong, SHI Qing-Fan, YANG Lei, SUN Gang. Air-Driven Segregation in Binary Granular Mixtures with Same Size but Different Densities[J]. Chin. Phys. Lett., 2008, 25(7): 076402
[10] H. Demirel, A.Ozkan, B. Kutlu. Finite-Size Scaling Analysis of a Three-Dimensional Blume--Capel Model in the Presence of External Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(7): 076402
[11] GUO Qiang, LIU Jian-Guo, WANG Bing-Hong, ZHOU Tao, CHEN Xing-Wen, YAO Yu-Hua. Opinion Spreading with Mobility on Scale-Free Networks[J]. Chin. Phys. Lett., 2008, 25(2): 076402
[12] YAMG Meng-Long, LIU Yi-Guang, YOU Zhi-Sheng. A New Cellular Automata Model Considering Finite Deceleration and Braking Distance[J]. Chin. Phys. Lett., 2007, 24(10): 076402
[13] N. Seferoglu, B. Kutlu. Critical Exponents for the Re-entrant Phase Transitions in the Three-Dimensional Blume--Emery--Griffiths Model on the Cellular Automaton[J]. Chin. Phys. Lett., 2007, 24(7): 076402
[14] SHI Qing-Fan, SUN Gang, HOU Mei-Ying, LU Kun-Quan. Segregation in Vertically Vibrated Binary Granular Mixtures with Same Size[J]. Chin. Phys. Lett., 2006, 23(11): 076402
[15] N. Seferoglu, A. Ö, zkan, B. Kutlu. Finite Size Effect for the First-Order Phase Transition of the Three-Dimensional Blume--Capel Model on a Cellular Automaton[J]. Chin. Phys. Lett., 2006, 23(9): 076402
Viewed
Full text


Abstract