Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 071201    DOI: 10.1088/0256-307X/30/7/071201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Enhanced Electron-Positron Pair Production of a Vacuum in a Strong Laser Pulse Field by Frequency Variation
LI Zi-Liang, SANG Hai-Bo, XIE Bai-Song**
Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875
Cite this article:   
LI Zi-Liang, SANG Hai-Bo, XIE Bai-Song 2013 Chin. Phys. Lett. 30 071201
Download: PDF(573KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Effects of frequency variation on vacuum electron-positron pair production in strong pulsed laser fields are investigated in the framework of a quantum kinetic method. It is found that the slowly varying frequency can influence the pair production to some extent, while rapid varying frequency can increase the pair creation rate a few orders if the time lies within a narrow time window, in which frequency jump occurs. The possible physical mechanism behind the pair enhancement phenomenon is discussed briefly.
Received: 04 March 2013      Published: 21 November 2013
PACS:  12.20.Ds (Specific calculations)  
  11.15.Tk (Other nonperturbative techniques)  
  42.55.Vc (X- and γ-ray lasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/071201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/071201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Zi-Liang
SANG Hai-Bo
XIE Bai-Song
[1] Sauter F 1931 Z. Phys. 69 742
Heisenberg W and Euler H 1936 Z. Phys. 98 714
[2] Schwinger J 1951 Phys. Rev. 82 664
[3] Brezin E and Itzykson C 1970 Phys. Rev. D 2 1191
[4] Ringwald A 2001 Phys. Lett. B 510 107
[5] Lin G F and Zhang L 2009 Chin. Phys. Lett. 26 059501
[6] Wang S M et al 2008 Chin. Phys. Lett. 25 58
[7] Duan P F et al 2011 Chin. Phys. Lett. 28 111401
[8] Kim S P and Page D N 2002 Phys. Rev. D 65 105002
[9] Dunne G V and Schubert C 2005 Phys. Rev. D 72 105004
Dunne G V and Wang Q H 2006 Phys. Rev. D 74 065015
Dumlu C K and Dunne G V 2011 Phys. Rev. D 84 125023
[10] Xie B S, Mohamedsedik M and Dulat S 2012 Chin. Phys. Lett. 29 021102
[11] Schmidt S M et al 1998 Int. J. Mod. Phys. E 7 709
[12] R Alkofer et al 2001 Phys. Rev. Lett. 87 193902
[13] Roberts C D, Schmidt S M and Vinnik D V 2002 Phys. Rev. Lett. 89 153901
[14] Hebenstreit F, Alkofer R and Gies H 2008 Phys. Rev. D 78 061701
[15] Hebenstreit F et al 2009 Phys. Rev. Lett. 102 150404
[16] Nuriman A et al 2012 Phys. Lett. B 717 465
[17] Hebenstreit F, Alkofer R and Gies H 2010 Phys. Rev. D 82 105026
Hebenstreit F et al 2011 Phys. Rev. D 83 065007
[18] Dumlu C K 2010 Phys. Rev. D 82 045007
[19] Tang S et al Electron-positron pair creation and correlation between momentum and energy level in symmetric potential well (submitted to PRA)
[20] Weiner A M et al 1993 J. Opt. Soc. Am. B 10 1112
[21] Takasago K et al 1998 IEEE J. Sel. Top. Quantum Electron. 4 346
[22] Weiner A M et al 1990 Opt. Lett. 15 326
Weiner A M 2000 Rev. Sci. Instrum. 71 1929
Related articles from Frontiers Journals
[1] Gianfranco Spavieri, George T. Gillies, Miguel Rodriguez, and Maribel Perez. Effective Interaction Force between an Electric Charge and a Magnetic Dipole and Locality (or Nonlocality) in Quantum Effects of the Aharonov–Bohm Type[J]. Chin. Phys. Lett., 2021, 38(3): 071201
[2] Kai Ma, Jian-Hua Wang, Huan-Xiong Yang, Hua-Wei Fan. Hall Conductivity in the Cosmic Defect and Dislocation Spacetime[J]. Chin. Phys. Lett., 2016, 33(10): 071201
[3] S. H. Kim. Electron–Cyclotron Laser Using Free-Electron Two-Quantum Stark Radiation in a Strong Uniform Axial Magnetic Field and an Alternating Axial Electric Field in a Voltage-Supplied Pill-Box Cavity[J]. Chin. Phys. Lett., 2016, 33(03): 071201
[4] MEI Xue-Song, ZHAO Shu-Min, QIAO Hao-Xue. Calculation of Higher-Order Foldy-Wouthuysen Transformation Hamiltonian[J]. Chin. Phys. Lett., 2014, 31(06): 071201
[5] SANG Hai-Bo, JIANG Min, XIE Bai-Song. Electron-Positron Pair Creation from Vacuum by using Negative Frequency Chirping Laser Pulses[J]. Chin. Phys. Lett., 2013, 30(11): 071201
[6] ZHANG Jia-Lin, and YU Hong-Wei. Casimir–Polder-Like Force for an Atom in Hartle–Hawking Vacuum outside a Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2012, 29(8): 071201
[7] XIE Bai-Song, Mohamedsedik Melike, Dulat Sayipjamal. Electron-Positron Pair Production in an Elliptic Polarized Time Varying Field[J]. Chin. Phys. Lett., 2012, 29(2): 071201
[8] DUAN Hai-Bin, XING Zhi-Hui. Improved Quantum Evolutionary Computation Based on Particle SwarmOptimization and Two-Crossovers[J]. Chin. Phys. Lett., 2009, 26(12): 071201
[9] ZHOU Hai-Qing. Two-Photon-Exchange Correction to Elastic ep Scattering in the Forward Angle Limit[J]. Chin. Phys. Lett., 2009, 26(6): 071201
[10] ZHANG Ying, WANG Qing. Gauge Covariant Fermion Propagator in the Presence of Arbitrary External Gauge Field and Its Schwinger--Dyson Equation[J]. Chin. Phys. Lett., 2008, 25(4): 071201
[11] ZHAO Yan, SHAO Cheng-Gang, LUO Jun. Finite Temperature Casimir Effect for Corrugated Plates[J]. Chin. Phys. Lett., 2006, 23(11): 071201
[12] JIANG Min, FANG Zhen-Yun, SANG Wen-Long, GAO Fei. Accurate Calculation of the Differential Cross Section of Bhabha Scattering with Photon Chain Loops Contribution in QED[J]. Chin. Phys. Lett., 2006, 23(10): 071201
[13] WANG Jing, ZHANG Xiang-Dong, PEI Shou-Yong, LIU Da-He. Temperature Tuning of Casimir Effect[J]. Chin. Phys. Lett., 2006, 23(9): 071201
[14] S. H. Kim. Anomalously Strong Scattering of Spontaneously Produced Laser Radiation in the First Free-Electron Laser and Study of Free-Electron Two-Quantum Stark Lasing in an Electric Wiggler with Quantum-Wiggler Electrodynamics[J]. Chin. Phys. Lett., 2006, 23(6): 071201
[15] ZHANG Jia-Lin, YU Hong-Wei. Lorentz Invariance and Brownian Motion of Test Particles with Constant Classical Velocity in Electromagnetic Vacuum[J]. Chin. Phys. Lett., 2005, 22(12): 071201
Viewed
Full text


Abstract