GENERAL |
|
|
|
|
Dynamics of Dark Solitons in Superfluid Fermi Gases |
QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui** |
Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
|
|
Cite this article: |
QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui 2013 Chin. Phys. Lett. 30 110305 |
|
|
Abstract We present an analytical study on the dynamics of dark solitons in superfluid Fermi gases. By using the modified lens-type transformation, the dynamical equation of superfluid Fermi gases is reduced to a modified one-dimensional nonlinear Shor?dinger equation (NLSE). Once again, by using the reductive perturbation method, the NLSE is reduced to a standard Korteweg-de Vries equation which may be useful for understanding the dynamics of dark solitons in superfluid Fermi gases. The existence of dark soliton solutions in the Fermi gases is provided. In particular, we show that, by manipulating and controlling the scattering length between Fermi atomics of different components and the external potential, the soliton's parameters (amplitude and width) can be changed in a controllable way.
|
|
Received: 05 June 2013
Published: 30 November 2013
|
|
PACS: |
03.75.Kk
|
(Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)
|
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
03.75.Ss
|
(Degenerate Fermi gases)
|
|
|
|
|
[1] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498 [2] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150 [3] Bongs K, Burger S, Hellweg D, Kottke M, Dettmer S, Rinkleff T, Cacciapuoti L, Arlt J, Sengstock K and Ertmer W 1998 J. Opt. B 5 S142 [4] Wu B, Liu J and Niu Q 2002 Phys. Rev. Lett. 88 034101 [5] Scott R G, Martin A M, Fromhold T M, Bujkiewicz S, Sheard F W and Leadbeater M 2003 Phys. Rev. Lett. 90 110404 [6] Wang D L, Yan X H and Liu W M 2008 Phys. Rev. E 78 026606 [7] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904 [8] Albert M, Paul T, Pavloff N and Leboeuf P 2008 Phys. Rev. Lett. 100 250405 [9] Theocharis G, Weller A, Ronzheimer J P, Gross C, Oberthaler M K, Kevrekidis P G and Frantzeskakis D J 2010 Phys. Rev. A 81 063604 [10] Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617 [11] Scott R G, Judd T E and Fromhold T M 2008 Phys. Rev. Lett. 100 100402 [12] Xue J K and Zhang A X 2008 Phys. Rev. Lett. 101 180401 [13] Antezza M, Dalfovo F, Pitaevskii L P and Stringari S 2007 Phys. Rev. A 76 043610 [14] Scott R G, Dalfovo F, Pitaevskii L P and Stringari S 2011 Phys. Rev. Lett. 106 185301 [15] Hang C, Konotop V V and Huang G 2009 Phys. Rev. A 79 033826 [16] Hiroki S and Masahito U 2003 Phys. Rev. Lett. 91 040403 [17] Abdullaev F K, Kamchatnov A M, Konotop V V and Brazhny V A 2003 Phys. Rev. Lett. 90 230402 [18] Dum R, Sanpera A, Suominen K A, Brewczyk M, Ku? M, Rz?zewski K and Lewenstein M 1998 Phys. Rev. Lett. 80 3899 [19] Theocharis G, Rapti Z, Kevrekidis P G, Frantzeskakis D J and Konotop V V 2003 Phys. Rev. A 67 063610 [20] Trombettoni A, Smerzi A and Bishop A R 2003 Phys. Rev. E 67 016607 [21] Zhang A X and Xue J K 2009 Phys. Rev. A 80 043617 [22] Kim Y E and Zubarev A L 2004 Phys. Rev. A 70 033612 [23] Ghosh T K and Machida K 2006 Phys. Rev. A 73 013613 [24] Sulem C and Sulem L P 1999 The Nonlinear Schr?dinger Equation (New York: Springer) [25] Taniuti T 1974 Prog. Theor. Phys. Suppl. 55 1 [26] Asano N 1974 Prog. Theor. Phys. Suppl. 55 52 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|