Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110305    DOI: 10.1088/0256-307X/30/11/110305
GENERAL |
Dynamics of Dark Solitons in Superfluid Fermi Gases
QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui**
Key Laboratory of Atomic & Molecular Physics and Functional Materials of Gansu Province, College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070
Cite this article:   
QI Xiu-Ying, ZHANG Ai-Xia, XUE Ju-Kui 2013 Chin. Phys. Lett. 30 110305
Download: PDF(487KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an analytical study on the dynamics of dark solitons in superfluid Fermi gases. By using the modified lens-type transformation, the dynamical equation of superfluid Fermi gases is reduced to a modified one-dimensional nonlinear Shor?dinger equation (NLSE). Once again, by using the reductive perturbation method, the NLSE is reduced to a standard Korteweg-de Vries equation which may be useful for understanding the dynamics of dark solitons in superfluid Fermi gases. The existence of dark soliton solutions in the Fermi gases is provided. In particular, we show that, by manipulating and controlling the scattering length between Fermi atomics of different components and the external potential, the soliton's parameters (amplitude and width) can be changed in a controllable way.
Received: 05 June 2013      Published: 30 November 2013
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Ss (Degenerate Fermi gases)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110305       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QI Xiu-Ying
ZHANG Ai-Xia
XUE Ju-Kui
[1] Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E and Cornell E A 1999 Phys. Rev. Lett. 83 2498
[2] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[3] Bongs K, Burger S, Hellweg D, Kottke M, Dettmer S, Rinkleff T, Cacciapuoti L, Arlt J, Sengstock K and Ertmer W 1998 J. Opt. B 5 S142
[4] Wu B, Liu J and Niu Q 2002 Phys. Rev. Lett. 88 034101
[5] Scott R G, Martin A M, Fromhold T M, Bujkiewicz S, Sheard F W and Leadbeater M 2003 Phys. Rev. Lett. 90 110404
[6] Wang D L, Yan X H and Liu W M 2008 Phys. Rev. E 78 026606
[7] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[8] Albert M, Paul T, Pavloff N and Leboeuf P 2008 Phys. Rev. Lett. 100 250405
[9] Theocharis G, Weller A, Ronzheimer J P, Gross C, Oberthaler M K, Kevrekidis P G and Frantzeskakis D J 2010 Phys. Rev. A 81 063604
[10] Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617
[11] Scott R G, Judd T E and Fromhold T M 2008 Phys. Rev. Lett. 100 100402
[12] Xue J K and Zhang A X 2008 Phys. Rev. Lett. 101 180401
[13] Antezza M, Dalfovo F, Pitaevskii L P and Stringari S 2007 Phys. Rev. A 76 043610
[14] Scott R G, Dalfovo F, Pitaevskii L P and Stringari S 2011 Phys. Rev. Lett. 106 185301
[15] Hang C, Konotop V V and Huang G 2009 Phys. Rev. A 79 033826
[16] Hiroki S and Masahito U 2003 Phys. Rev. Lett. 91 040403
[17] Abdullaev F K, Kamchatnov A M, Konotop V V and Brazhny V A 2003 Phys. Rev. Lett. 90 230402
[18] Dum R, Sanpera A, Suominen K A, Brewczyk M, Ku? M, Rz?zewski K and Lewenstein M 1998 Phys. Rev. Lett. 80 3899
[19] Theocharis G, Rapti Z, Kevrekidis P G, Frantzeskakis D J and Konotop V V 2003 Phys. Rev. A 67 063610
[20] Trombettoni A, Smerzi A and Bishop A R 2003 Phys. Rev. E 67 016607
[21] Zhang A X and Xue J K 2009 Phys. Rev. A 80 043617
[22] Kim Y E and Zubarev A L 2004 Phys. Rev. A 70 033612
[23] Ghosh T K and Machida K 2006 Phys. Rev. A 73 013613
[24] Sulem C and Sulem L P 1999 The Nonlinear Schr?dinger Equation (New York: Springer)
[25] Taniuti T 1974 Prog. Theor. Phys. Suppl. 55 1
[26] Asano N 1974 Prog. Theor. Phys. Suppl. 55 52
Related articles from Frontiers Journals
[1] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 110305
[2] Cong Liu, Junjie Wang, Xin Deng, Xiaomeng Wang, Chris J. Pickard, Ravit Helled, Zhongqing Wu, Hui-Tian Wang, Dingyu Xing, and Jian Sun. Partially Diffusive Helium-Silica Compound under High Pressure[J]. Chin. Phys. Lett., 2022, 39(7): 110305
[3] Fan Zhang and Lan Yin. Phonon Stability of Quantum Droplets in Dipolar Bose Gases[J]. Chin. Phys. Lett., 2022, 39(6): 110305
[4] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 110305
[5] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 110305
[6] Yingda Chen, Dong Zhang, and Kai Chang. Exciton Vortices in Two-Dimensional Hybrid Perovskite Monolayers[J]. Chin. Phys. Lett., 2020, 37(11): 110305
[7] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 110305
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 110305
[9] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 110305
[10] Wei Qi, Zi-Hao Li, Zhao-Xin Liang. Modulational Instability of Dipolar Bose–Einstein Condensates in Optical Lattices with Three-Body Interactions[J]. Chin. Phys. Lett., 2018, 35(1): 110305
[11] Yan-Na Li, Wei-Dong Li. Phase Dissipation of an Open Two-Mode Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2017, 34(7): 110305
[12] Xin Zhang, Zi-Fa Yu, Ju-Kui Xue. Coherence of Disordered Bosonic Gas with Two- and Three-Body Interactions[J]. Chin. Phys. Lett., 2016, 33(04): 110305
[13] WANG Long, YU Zi-Fa, XUE Ju-Kui. The Coherence of a Dipolar Condensate in a Harmonic Potential Superimposed to a Deep Lattice[J]. Chin. Phys. Lett., 2015, 32(06): 110305
[14] ZHANG Xiu-Ming, TIAN Chi. Effect of the Minimal Length on Bose–Einstein Condensation in the Relativistic Ideal Bose Gas[J]. Chin. Phys. Lett., 2015, 32(01): 110305
[15] XUE Rui, LI Wei-Dong, LIANG Zhao-Xin. Collective Excitation and Quantum Depletion of a Bose–Einstein Condensate in a Periodic Array of Quantum Wells[J]. Chin. Phys. Lett., 2014, 31(03): 110305
Viewed
Full text


Abstract