Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 110304    DOI: 10.1088/0256-307X/30/11/110304
GENERAL |
Unraveling a Driven Damped Harmonic Oscillator through Entangled State Representation
Seyed Mahmoud Ashrafi**, Mohammad Reza Bazrafkan
Department of Physics, Faculty of Science, I. K. I. University, Qazvin, Iran
Cite this article:   
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan 2013 Chin. Phys. Lett. 30 110304
Download: PDF(358KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing the thermo-entangled state representation, the common eigenstates of relative position and the total momentum of a two-mode system, we solve the master equation of a damped harmonic oscillator driven by a time-dependent uniform force field.
Received: 19 August 2013      Published: 30 November 2013
PACS:  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/110304       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/110304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Seyed Mahmoud Ashrafi
Mohammad Reza Bazrafkan
[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum System (Oxford: Oxford University)
[2] Schleich W P 2001 Quantum Optics in Phase Space (Berlin: Wiley-VCH), and references therein
[3] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[4] Fan H Y and Fan Y 2001 Phys. Lett. A 282 269
[5] Fan H Y and Hu L Y 2008 Opt. Commun. 281 5571
[6] Fan H Y and Fan Y 2002 J. Phys. A 35 6873
[7] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University)
[8] Fan H Y and Hu L U 2009 Commun. Theor. Phys. 51 729
[9] Bazrafkan M R and Ashrafi M 2013 J. Russia Laser 34 1
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 110304
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 110304
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 110304
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 110304
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 110304
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 110304
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 110304
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 110304
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 110304
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 110304
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 110304
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 110304
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 110304
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 110304
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 110304
Viewed
Full text


Abstract