CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
High-Quality Single Crystalline Ge(111) Growth on Si(111) Substrates by Solid Phase Epitaxy |
SUN Bing, CHANG Hu-Dong, LU Li, LIU Hong-Gang**, WU De-Xin |
Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
|
|
Cite this article: |
WU De-Xin, SUN Bing, LU Li et al 2012 Chin. Phys. Lett. 29 036102 |
|
|
Abstract Heterogeneous integration of crystalline Ge layers on cleaned and H-terminated Si(111) substrates are demonstrated by employing a combination of e-beam evaporation and solid phase epitaxy techniques. High-quality single crystalline Ge(111) layers on Si(111) substrates with a smooth Ge surface and an abrupt interface between Ge and Si are obtained. An XRD rocking curve scan of the Ge(111) diffraction peak shows a FWHM of only 260 arcsec for a 50-nm-thick Ge layer annealed at 600°C with a ramp−up rate of 20°C/s and a holding time of 1 min. The AFM images exhibit that the rms surface roughness of all the crystalline Ge layers are less than 2.1 nm.
|
Keywords:
61.05.Cp
68.35.Bg
|
|
Received: 25 August 2011
Published: 11 March 2012
|
|
|
|
|
|
[1] Nayfeh A, Chui C O, Yonehara T and Saraswat K C 2005 IEEE Electron Device Lett. 26 311
[2] Yu H Y, Ishibashi M, Park J H, Kobayashi M and Saraswat K C 2009 IEEE Electron Device Lett. 30 675
[3] Nicholas G, Brunco D P, Dimoulas A, Steenbergen J V, Bellenger F, Houssa M, Caymax M, Meuris M, Panayiotatos Y and Sotiropoulos A 2007 IEEE Trans. Electron Devices 54 1425
[4] Claeys C and Simoen E 2007 Germanium Based Technologies: From Materials to Devices 1st edn (Amsterdam: Elsevier)
[5] Laha A, Bugiel E, Jestremski M, Ranjith R, Fissel A and Osten H J 2009 Nanotechnology 20 475604
[6] Tersoff J, 1991 Phys. Rev. B 43 9377
[7] Fitzgerald E A, Xie Y H, Green M L, Brasen D, Kortan A R, Michel J, Mii Y J and Weir B E 1991 Appl. Phys. Lett. 59 811
[8] Mii Y J, Xie Y H, Fitzgerald E A, Monroe D, Thiel F A, Weir B E and Feldman L C 1991 Appl. Phys. Lett. 59 1611
[9] Loo R, Souriau L, Ong P, Kenis K, Rip J, Storck P, Buschhardt T and Vorderwestner M 2011 J. Cryst. Growth 324 15
[10] Currie M T, Samavedam S B, Langdo T A, Leitz C W and Fitzgerald E A 1998 Appl. Phys. Lett. 72 1718
[11] Lieten R R, Degroote S, Leys M, Posthuma N E and Borghs G 2009 Appl. Phys. Lett. 94 112113
[12] Lieten R R, Degroote S, Clemente F, Leys M and Borghs G 2010 Appl. Phys. Lett. 96 052109
[13] Morita Y, Miki K and Tokumoto H 1995 Surf. Sci. 325 21
[14] Muto A, Okada M, Ikeda H, Zaima S and Yasuda Y 1998 Appl. Surf. Sci. 130/132 321
[15] Takahagi T, Nagai I, Ishitani A, Kuroda H and Nagasawa Y 1988 J. Appl. Phys. 64 3516
[16] Williams G V M, Bittar A and Trodahl H J 1988 J. Appl. Phys. 64 5148
[17] Jing C B, Zhang C J, Zang X D, Zhou W Z, Bai W, L Tie and Chu J H 2009 Sci. Technol. Adv. Mater. 10 065001
[18] Thonhauser T and Mahan1 G D 2005 Phys. Rev. B 71 081307
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|