Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 031201    DOI: 10.1088/0256-307X/29/3/031201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Dissociation Temperature of Strictly Confined Charmonium States
QU Zhen**, LIU Yun-Peng, ZHUANG Peng-Fei
Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
ZHUANG Peng-Fei, QU Zhen, LIU Yun-Peng 2012 Chin. Phys. Lett. 29 031201
Download: PDF(497KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the dissociation of strictly confined charmonium states at finite temperature. The strict confinement constraint to the Cornell potential leads to a 10% higher J/ψ dissociation temperature and in turn a weaker J/ψ suppression in relativistic heavy ion collisions.
Keywords: 12.38.Mh      25.75.-q      25.75.Nq     
Received: 14 December 2011      Published: 11 March 2012
PACS:  12.38.Mh (Quark-gluon plasma)  
  25.75.-q (Relativistic heavy-ion collisions (collisions induced by light ions studied to calibrate relativistic heavy-ion collisions should be classified under both 25.75.-q and sections 13 or 25 appropriate to the light ions))  
  25.75.Nq (Quark deconfinement, quark-gluon plasma production, and phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/031201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/031201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHUANG Peng-Fei
QU Zhen
LIU Yun-Peng
[1] Matsui T and Satz H 1986 Phys. Lett. B 178 416
[2] Abreu M C et al 1999 Phys. Lett. B 466 408
[3] M Gonin et al 1996 [NA50 Collaboration] Nucl. Phys. A 610 404C
[4] Topilskaya N Set al [NA50 Collaboration] 2003 Nucl. Phys. A 715 675
[5] Alessandro Bet al [NA50 Collaboration] 2006 Eur. Phys. J. C 48 329
[6] Adare A et al [PHENIX Collaboration] 2007 Phys. Rev. Lett. 98 232301
[7] Atomssa E T [PHENIX Collaboration] 2009 Nucl. Phys. A 830 331C
[8] Abelev B I et al [STAR Collaboration] 2009 Phys. Rev. C 80 041902
[9] Pillot P et al [f. t A Collaboration] 2011 J. Phys. G 38 124111
[10] Dahms T et al [f. t C Collaboration] 2011 J. Phys. G 38 124105
[11] Reed R et al [STAR Collaboration] 2011 J. Phys. Conf. Ser. 270 012026
[12] Chatrchyan S et al [CMS Collaboration] 2011 Phys. Rev. Lett. 107 052302
[13] Nakamura K et al [Particle Data Group] 2010 J. Phys. G 37 075021
[14] Satz H 2006 J. Phys. G 32 R25
[15] d'Enterria D G and Peressounko D 2006 Eur. Phys. J. C 46 451
[16] Adare A et al [PHENIX Collaboration] 2010 Phys. Rev. Lett. 104 132301
[17] Kaczmarek O 2009 Eur. Phys. J. C 61 811
[18] Shuryak E V and Zahed I 2004 Phys. Rev. D 70 054507
[19] Vogt R 2010 Phys. Rev. C81 044903
[20] Heinz U W and Kolb P F 2002 Nucl. Phys. A 702 269
[21] Kolb P F and Rapp R 2003 Phys. Rev. C 67 044903
[22] Bazavov A et al 2009 Phys. Rev. D 80 014504
[23] Zhu X L, Zhuang P F and Xu N 2005 Phys. Lett. B 607
Related articles from Frontiers Journals
[1] CAO Jing, ZHAO A-Meng, SUN Wei-Min, ZONG Hong-Shi. An Improved Quasi-particle Model Framework for Quark-Gluon Plasma from the Path Integral Formalism[J]. Chin. Phys. Lett., 2012, 29(6): 031201
[2] JIANG Yu,GONG Hao,SUN Wei-Min,ZONG Hong-Shi,**. Wigner Solution to the Quark Gap Equation in the Nonzero Current Quark Mass[J]. Chin. Phys. Lett., 2012, 29(4): 031201
[3] P. Guptaroy, Goutam Sau, S. Bhattacharyya. Ansatzs, Assumptions and Production of J/Ψ-Particles: A Non-charmed Approach versus Charmed Ones[J]. Chin. Phys. Lett., 2012, 29(2): 031201
[4] JIANG Zhi-Jin, SUN Yu-Fen. Energy and Centrality Dependences of Pseudorapidity Distributions of Charged Particles in Cu+Cu Collisions[J]. Chin. Phys. Lett., 2012, 29(2): 031201
[5] Z. Wazir** . Centrality in Relativistic Nuclear Collisions and the Random Matrix Approach[J]. Chin. Phys. Lett., 2011, 28(9): 031201
[6] ZHANG Wei-Ning, **, YIN Hong-Jie, REN Yan-Yu . Two-Pion Interferometry for the Granular Sources in Ultrarelativistic Heavy Ion Collisions at the RHIC and the LHC[J]. Chin. Phys. Lett., 2011, 28(12): 031201
[7] Prabir Kumar Haldar**, Sanjib Kumar Manna . Factorial Correlators and Oscillatory Multiplicity Moments at the CERN SPS Energy for Ring-Like and Jet-Like Events[J]. Chin. Phys. Lett., 2011, 28(1): 031201
[8] XIANG Wen-Chang, WANG Sheng-Qin, ZHOU Dai-Cui. Hadron Multiplicities in Pb+Pb Collisions at the Large Hadron Collider and Pomeron Loop Effects[J]. Chin. Phys. Lett., 2010, 27(7): 031201
[9] ZHOU Feng-Chu, YIN Zhong-Bao, ZHOU Dai-Cui. Rapidity Losses in Heavy-Ion Collisions from AGS to RHIC Energies[J]. Chin. Phys. Lett., 2010, 27(5): 031201
[10] WANG Hong-Min, HOU Zhao-Yu, SUN Xian-Jing. Influence of the Nucleon Hard Partons Distribution on J/Ψ Suppression in a GMC Framework[J]. Chin. Phys. Lett., 2010, 27(5): 031201
[11] FAN San-Hong, MENG Cai-Rong, LIU Fu-Hu. Emission of Neutral Pions with High Transverse Momenta in A-A and p-p Collisions at Energies Available at the BNL Relativistic Heavy Ion Collider[J]. Chin. Phys. Lett., 2010, 27(5): 031201
[12] SUN Jian-Xin, LIU Fu-Hu, WANG Er-Qin. Pseudorapidity Distributions of Charged Particles and Contributions of Leading Nucleons in Cu-Cu Collisions at High Energies[J]. Chin. Phys. Lett., 2010, 27(3): 031201
[13] CAO Jing, ZHAO A-Meng, LUO Liu-Jun, SUN Wei-Min, ZONG Hong-Shi,. Calculation of Quark-Number Susceptibility at Finite Chemical Potential and Temperature[J]. Chin. Phys. Lett., 2010, 27(3): 031201
[14] YU Li-Li, M. J. Efaaf, ZHANG Wei-Ning,. Interferometry Signatures for QCD First-Order Phase Transition in High Energy Heavy Ion Collisions[J]. Chin. Phys. Lett., 2010, 27(2): 031201
[15] WU Liang-Kai. Transition Temperature of Lattice Quantum Chromodynamics with Two Flavors with a Small Chemical Potential[J]. Chin. Phys. Lett., 2010, 27(2): 031201
Viewed
Full text


Abstract