Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 030202    DOI: 10.1088/0256-307X/29/3/030202
GENERAL |
Application of the Homotopy Perturbation Method to the Burgers Equation with Delay
S. Karimi Vanani*, F. Soleymani
Department of Mathematics, Islamic Azad University, Zahedan Branch, Zahedan, Iran
Cite this article:   
S. Karimi Vanani, F. Soleymani 2012 Chin. Phys. Lett. 29 030202
Download: PDF(390KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The homotopy perturbation method (HPM) is presented to obtain the solution of the time-delayed Burgers equation. The HPM is a an efficient approach to obtain an analytical approximate solution of linear and nonlinear problems. The HPM provides approximate solutions in the form of a convergent series with easily computable components. Some experiments are employed to illustrate the validity and flexibility of the HPM for solving the time-delayed Burgers equation.
Keywords: 02.30.Jr      02.30.Ks      02.60.Gf     
Received: 29 September 2011      Published: 11 March 2012
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ks (Delay and functional equations)  
  02.60.Gf (Algorithms for functional approximation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/030202       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/030202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Karimi Vanani
F. Soleymani
[1] Hale J K and Lunel S M V 1993 Introduction to Functional Differential Equations (New York: Springer-Verlag)
[2] Vanani S K and Aminataei A 2009 Math. Comput. Modelling. 49 234
[3] Vanani S K and Aminataei A 2010 J. Appl. Funct. Anal. 5 169
[4] Salamon D 1984 Control and Observation of Neutral Systems (Boston: Pitman Advanced Publishing Program)
[5] Fahmya E S, Abdusalam H A and Raslan K R 2008 Nonlinear Analysis 69 4775
[6] He J H 2004 Appl. Math. Comput. 151 287
[7] He J H 2005 Chaos Solit. Fract. 26 695
[8] He J H 2003 Appl. Math. Comput. 135 73
[9] Öziş T and Y ?ld?r?m 2007 Chaos Soliton Fraction 34 989
[10] Beléndez A, Pascual C, Ortuno M, Beléndez T and Gallego S 2009 Nonlinear Analysis 10 601
[11] Beléndez A, Pascual C, Beléndez T and Hernández A 2009 Nonlinear Analysis 10 416
[12] He J H 2008 Topol. Meth. Nonlinear Analysis 31 205
[13] He J H 2006 Int. J. Mod. Phys. B 20 1141
[14] He J H 2006 Int. J. Mod. Phys. B 20 2561
[15] Bulut H and Baskonus H M 2008 Int. J. Bas. Appl. Sci. 9 32
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 030202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[5] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 030202
[6] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030202
[7] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 030202
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 030202
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 030202
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 030202
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030202
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030202
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 030202
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030202
Viewed
Full text


Abstract