GENERAL |
|
|
|
|
New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation |
CAI Jia-Xiang**, MIAO Jun |
School of Mathematical Science, Huaiyin Normal University, Huaian 223300 |
|
Cite this article: |
CAI Jia-Xiang, MIAO Jun 2012 Chin. Phys. Lett. 29 030201 |
|
|
Abstract We propose an explicit multisymplectic Fourier pseudospectral scheme for the complex modified Korteweg-de Vries equation. Two test problems, the motion of a single solitary wave and interaction of solitary waves, are simulated. Numerical experiments show that the present scheme not only provides highly accurate numerical solutions, but also displays good performance in preserving the three integral invariants during long-time computation. Especially, the excellent ability to preserve the higher order invariant indicates that the proposed algorithm is robust and reliable.
|
Keywords:
02.60.Cb
02.70.Bf
45.10.Na
45.20.Dh
|
|
Received: 27 October 2011
Published: 11 March 2012
|
|
PACS: |
02.60.Cb
|
(Numerical simulation; solution of equations)
|
|
02.70.Bf
|
(Finite-difference methods)
|
|
45.10.Na
|
(Geometrical and tensorial methods)
|
|
45.20.dh
|
(Energy conservation)
|
|
|
|
|
[1] Muslu G M and Erabay H A 2003 Comput. Math. Appl. 45 503 [2] Taha T R 1994 Math. Comput. Simul. 37 461[3] Ismail M S 2008 Appl. Math. Comput. 202 520 [4] Ismail M S 2009 Commun. Nonlinear Sci. Numer. Simul. 14 749 [5] Uddina M et al 2009 Comput. Math. Appl. 58 566 [6] Korkmaz A and Da? I 2009 Comput. Phys. Commun. 180 1516 [7] Aydin A and Korasözen B 2010 J. Math. Phys. 51 083511 [8] Marsden J E et al 1999 Commun. Math. Phys. 199 351 [9] Bridges T J and Reich S 2001 Phys. Lett. A 284 184 [10] Ascher U M and McLachlan R I 2004 Appl. Numer. math. 48 255 [11] Wang Y S et al 2008 Chin. Phys. Lett. 25 1538[12] Cai J X et al 2009 J. Math. Phys. 50 033510 [13] Cai J X 2010 J. Comput. Appl. Math. 234 899 [14] Hong J L et al 2009 J. Comput. Phys. 228 3517 [15] Bridges T J and Reich S 2001 Physica D 152 491 [16] Chen J B and Qin M Z 2001 Electron. Trans. Numer. Anal. 12 193[17] Wang J 2009 J. Phys. A: Math. Theor. 42 085205 [18] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613 [19] Kong L H et al 2010 Comput. Phys. Commun. 181 1369 [20] Lv Z Q et al 2011 Chin. Phys. Lett. 28 060205 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|