Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 030201    DOI: 10.1088/0256-307X/29/3/030201
GENERAL |
New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation
CAI Jia-Xiang**, MIAO Jun
School of Mathematical Science, Huaiyin Normal University, Huaian 223300
Cite this article:   
CAI Jia-Xiang, MIAO Jun 2012 Chin. Phys. Lett. 29 030201
Download: PDF(664KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose an explicit multisymplectic Fourier pseudospectral scheme for the complex modified Korteweg-de Vries equation. Two test problems, the motion of a single solitary wave and interaction of solitary waves, are simulated. Numerical experiments show that the present scheme not only provides highly accurate numerical solutions, but also displays good performance in preserving the three integral invariants during long-time computation. Especially, the excellent ability to preserve the higher order invariant indicates that the proposed algorithm is robust and reliable.
Keywords: 02.60.Cb      02.70.Bf      45.10.Na      45.20.Dh     
Received: 27 October 2011      Published: 11 March 2012
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/030201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAI Jia-Xiang
MIAO Jun
[1] Muslu G M and Erabay H A 2003 Comput. Math. Appl. 45 503
[2] Taha T R 1994 Math. Comput. Simul. 37 461
[3] Ismail M S 2008 Appl. Math. Comput. 202 520
[4] Ismail M S 2009 Commun. Nonlinear Sci. Numer. Simul. 14 749
[5] Uddina M et al 2009 Comput. Math. Appl. 58 566
[6] Korkmaz A and Da? I 2009 Comput. Phys. Commun. 180 1516
[7] Aydin A and Korasözen B 2010 J. Math. Phys. 51 083511
[8] Marsden J E et al 1999 Commun. Math. Phys. 199 351
[9] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[10] Ascher U M and McLachlan R I 2004 Appl. Numer. math. 48 255
[11] Wang Y S et al 2008 Chin. Phys. Lett. 25 1538
[12] Cai J X et al 2009 J. Math. Phys. 50 033510
[13] Cai J X 2010 J. Comput. Appl. Math. 234 899
[14] Hong J L et al 2009 J. Comput. Phys. 228 3517
[15] Bridges T J and Reich S 2001 Physica D 152 491
[16] Chen J B and Qin M Z 2001 Electron. Trans. Numer. Anal. 12 193
[17] Wang J 2009 J. Phys. A: Math. Theor. 42 085205
[18] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[19] Kong L H et al 2010 Comput. Phys. Commun. 181 1369
[20] Lv Z Q et al 2011 Chin. Phys. Lett. 28 060205
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 030201
[2] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 030201
[3] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 030201
[4] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 030201
[5] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 030201
[6] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 030201
[7] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 030201
[8] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 030201
[9] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 030201
[10] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 030201
[11] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 030201
[12] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 030201
[13] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 030201
[14] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 030201
[15] KIM Bong-Hwan**, PARK Seoung-Hwan***, LEE Jung-Hee, MOON Yong-Tae. Effect of In Composition on Two-Dimensional Electron Gas in Wurtzite AlGaN/InGaN Heterostructures[J]. Chin. Phys. Lett., 2010, 27(11): 030201
Viewed
Full text


Abstract