Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 016402    DOI: 10.1088/0256-307X/29/1/016402
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Si-Nanocrystals with Bimodal Size Distribution in Evenly Annealed SiO Revealed with Raman Scattering
KE Wei-Wei, FENG Xue**, HUANG Yi-Dong
State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084
Cite this article:   
KE Wei-Wei, FENG Xue, HUANG Yi-Dong 2012 Chin. Phys. Lett. 29 016402
Download: PDF(913KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The size distribution of Si-nanocrystals (Si-ncs) in evenly annealed SiO is investigated with transmission electron microscopy (TEM), x-ray diffraction (XRD), and Raman scattering. Two groups of Si-ncs with very different most probable diameters are identified, where one is >6 nm and the other one is < 2 nm. Both of them increase gradually with increasing annealing temperature. Such a phenomenon is observed directly by TEM for samples with larger Si−ncs (>10 nm) and it can be revealed clearly for all samples by Raman spectra with two components (∼500 cm−1 and ∼520 cm−1). The results of XRD show the average effect. The experimental results indicate that the common assumption of Si-nc size distribution with single most probable diameter is not always proper and the possible mechanisms are briefly discussed.
Keywords: 64.75.Jk      61.72.Uf      81.16.-c     
Received: 03 November 2011      Published: 07 February 2012
PACS:  64.75.Jk (Phase separation and segregation in nanoscale systems)  
  61.72.uf (Ge and Si)  
  81.16.-c (Methods of micro- and nanofabrication and processing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/016402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/016402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
KE Wei-Wei
FENG Xue
HUANG Yi-Dong
[1] Pai Y H, Chang C H and Lin G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 1387
[2] Song D Y, Cho E C, Conibeer G, Flynn C, Huang Y D and Green M A 2008 Sol. Energy Mater. Sol. Cells 92 474
[3] Choi S, Baek S, Jang M, Jeon S, Kim J, Kim C and Hwanga H 2005 J. Electrochem. Soc. 152 G345
[4] Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N and Swihart M T 2008 ACS Nano 2 873
[5] Lin G R, Wu C L, Lian C W and Chang H C 2009 Appl. Phys. Lett. 95 021106
[6] Hao H L, Wu L K and Shen W Z 2008 Appl. Phys. Lett. 92 121922
[7] Wang J, Wang X F, Li Q, Hryciw A and Meldrum A 2007 Philos. Mag. 87 11
[8] Riabinina D, Durand C, Margot J, Chaker M, Botton G A and Rosei F 2006 Phys. Rev. B 74 075334
[9] Gregori G, Kleebe H J, Readey D W and Soraru G D 2006 J. Am. Ceram. Soc. 89 1699
[10] Mercaldo L V, Esposito E M, Veneri P D, Fameli G, Mirabella S and Nicotra G 2010 Appl. Phys. Lett. 97 153112
[11] Bonafos C, Colombeau B, Altibelli A, Carrada M, Assayag G B, Garrido B, López M, Pérez Rodríguez A, Morante J R and Claverie A 2001 Nucl. Instrum. Methods Phys. Res. B 178 17
[12] Ke W, Feng X and Huang Y 2011 J. Cryst. Growth 316 191
[13] Langford J I and Wilson A J C 1978 J. Appl. Crystallogr. 11 102
[14] Meier C, Lüttjohanna S, Kravets V G, Nienhaus H, Lorke A and Wiggers H 2006 Physica E 32 155
[15] Barba D, Martin F and Ross G G 2008 Nanotechnology 19 115707
[16] Richter H, Wang Z P and Ley L 1981 Solid State Commun. 39 625
[17] Faraci G, Gibilisco S, Russo P and Pennisi A R 2006 Phys. Rev. B 73 033307
[18] Khriachtchev L, Rasanen M and Novikov S 2005 Appl. Phys. Lett. 86 141911
[19] Faraci G, Gibilisco S and Pennisi A R 2009 Phys. Lett. A 373 3779
[20] Rossi M C, Salvatori S, Galluzzi F and Conte G 2000 Mater. Sci. Eng. B 69-70 299
[21] Osinniy V, Lysgaard S, Kolkovsky V, Pankratov V and Larsen A N 2009 Nanotechnology 20 195201
[22] Crowe I F, Halsall M P, Hulko O, Knights A P, Gwilliam R F, Wojdak M and Kenyon A J 2011 J. Appl. Phys. 109 083534
[23] Nesbit L A 1985 Appl. Phys. Lett. 46 38
[24] Fernandez B G, Lopez M, Garcia C, Perez Rodriguez A, Morante J R, Bonafos C, Carrada M and Claverie A 2002 J. Appl. Phys. 91 798
[25] Burlakov V M, Briggs G A D, Sutton A P, Bongiorno A and Pasquarello A 2004 Phys. Rev. Lett. 93 135501
[26] Tu Y and Tersoff J 2000 Phys. Rev. Lett. 84 4393
[27] Yu D, Lee S and Hwanga G S 2007 J. Appl. Phys. 102 084309
Related articles from Frontiers Journals
[1] CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng, MIN Nai-Ben, WANG Zhen-Lin** . Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays[J]. Chin. Phys. Lett., 2011, 28(5): 016402
[2] GAO Li-Peng, HAN Pei-De**, MAO Xue, FAN Yu-Jie, HU Shao-Xu, ZHAO Chun-Hua, MI Yan-Hong . Deep Energy Levels Formed by Se Implantation in Si[J]. Chin. Phys. Lett., 2011, 28(3): 016402
[3] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 016402
[4] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 016402
[5] M. Ziabari, V. Mottaghitalab, S. T. McGovern A. K. Haghi. Measuring Electrospun Nanofibre Diameter: a Novel Approach[J]. Chin. Phys. Lett., 2008, 25(8): 016402
[6] ZHAO Mei, CHEN Xiao-Long, WANG Wen-Jun, ZHANG Zhi-Hua, XU Yan-Ping. Influence of Phase Transition of Starting Materials on Growth of GaN Nanomaterials by CVD[J]. Chin. Phys. Lett., 2007, 24(8): 016402
[7] ZHU Xian-Fang, , WANG Zhan-Guo. Evidence of Ultrafast Energy Exchange-Induced Soft Mode of Phonons and Lattice Instability: a Nanotime Effect[J]. Chin. Phys. Lett., 2005, 22(3): 016402
[8] XING Ying-Jie, XI Zhong-He, XUE Zeng-Quan, YU Da-Peng. Diameter Modification of Si Nanowires via Catalyst Size[J]. Chin. Phys. Lett., 2003, 20(5): 016402
[9] WAN Qing, WANG Tai-Hong, LIN Cheng-Lu. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for Carbon Nanotube Growth[J]. Chin. Phys. Lett., 2003, 20(2): 016402
Viewed
Full text


Abstract