CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Si-Nanocrystals with Bimodal Size Distribution in Evenly Annealed SiO Revealed with Raman Scattering |
KE Wei-Wei, FENG Xue**, HUANG Yi-Dong |
State Key Laboratory of Integrated Optoelectronics, Department of Electronic Engineering, Tsinghua University, Beijing 100084 |
|
Cite this article: |
KE Wei-Wei, FENG Xue, HUANG Yi-Dong 2012 Chin. Phys. Lett. 29 016402 |
|
|
Abstract The size distribution of Si-nanocrystals (Si-ncs) in evenly annealed SiO is investigated with transmission electron microscopy (TEM), x-ray diffraction (XRD), and Raman scattering. Two groups of Si-ncs with very different most probable diameters are identified, where one is >6 nm and the other one is < 2 nm. Both of them increase gradually with increasing annealing temperature. Such a phenomenon is observed directly by TEM for samples with larger Si−ncs (>10 nm) and it can be revealed clearly for all samples by Raman spectra with two components (∼500 cm−1 and ∼520 cm−1). The results of XRD show the average effect. The experimental results indicate that the common assumption of Si-nc size distribution with single most probable diameter is not always proper and the possible mechanisms are briefly discussed.
|
Keywords:
64.75.Jk
61.72.Uf
81.16.-c
|
|
Received: 03 November 2011
Published: 07 February 2012
|
|
PACS: |
64.75.Jk
|
(Phase separation and segregation in nanoscale systems)
|
|
61.72.uf
|
(Ge and Si)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
|
|
|
[1] Pai Y H, Chang C H and Lin G R 2009 IEEE J. Sel. Top. Quantum Electron. 15 1387 [2] Song D Y, Cho E C, Conibeer G, Flynn C, Huang Y D and Green M A 2008 Sol. Energy Mater. Sol. Cells 92 474 [3] Choi S, Baek S, Jang M, Jeon S, Kim J, Kim C and Hwanga H 2005 J. Electrochem. Soc. 152 G345 [4] Erogbogbo F, Yong K T, Roy I, Xu G, Prasad P N and Swihart M T 2008 ACS Nano 2 873 [5] Lin G R, Wu C L, Lian C W and Chang H C 2009 Appl. Phys. Lett. 95 021106 [6] Hao H L, Wu L K and Shen W Z 2008 Appl. Phys. Lett. 92 121922 [7] Wang J, Wang X F, Li Q, Hryciw A and Meldrum A 2007 Philos. Mag. 87 11 [8] Riabinina D, Durand C, Margot J, Chaker M, Botton G A and Rosei F 2006 Phys. Rev. B 74 075334 [9] Gregori G, Kleebe H J, Readey D W and Soraru G D 2006 J. Am. Ceram. Soc. 89 1699 [10] Mercaldo L V, Esposito E M, Veneri P D, Fameli G, Mirabella S and Nicotra G 2010 Appl. Phys. Lett. 97 153112 [11] Bonafos C, Colombeau B, Altibelli A, Carrada M, Assayag G B, Garrido B, López M, Pérez Rodríguez A, Morante J R and Claverie A 2001 Nucl. Instrum. Methods Phys. Res. B 178 17 [12] Ke W, Feng X and Huang Y 2011 J. Cryst. Growth 316 191 [13] Langford J I and Wilson A J C 1978 J. Appl. Crystallogr. 11 102 [14] Meier C, Lüttjohanna S, Kravets V G, Nienhaus H, Lorke A and Wiggers H 2006 Physica E 32 155 [15] Barba D, Martin F and Ross G G 2008 Nanotechnology 19 115707 [16] Richter H, Wang Z P and Ley L 1981 Solid State Commun. 39 625 [17] Faraci G, Gibilisco S, Russo P and Pennisi A R 2006 Phys. Rev. B 73 033307 [18] Khriachtchev L, Rasanen M and Novikov S 2005 Appl. Phys. Lett. 86 141911 [19] Faraci G, Gibilisco S and Pennisi A R 2009 Phys. Lett. A 373 3779 [20] Rossi M C, Salvatori S, Galluzzi F and Conte G 2000 Mater. Sci. Eng. B 69-70 299 [21] Osinniy V, Lysgaard S, Kolkovsky V, Pankratov V and Larsen A N 2009 Nanotechnology 20 195201 [22] Crowe I F, Halsall M P, Hulko O, Knights A P, Gwilliam R F, Wojdak M and Kenyon A J 2011 J. Appl. Phys. 109 083534 [23] Nesbit L A 1985 Appl. Phys. Lett. 46 38 [24] Fernandez B G, Lopez M, Garcia C, Perez Rodriguez A, Morante J R, Bonafos C, Carrada M and Claverie A 2002 J. Appl. Phys. 91 798 [25] Burlakov V M, Briggs G A D, Sutton A P, Bongiorno A and Pasquarello A 2004 Phys. Rev. Lett. 93 135501 [26] Tu Y and Tersoff J 2000 Phys. Rev. Lett. 84 4393 [27] Yu D, Lee S and Hwanga G S 2007 J. Appl. Phys. 102 084309 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|