Chin. Phys. Lett.  2012, Vol. 29 Issue (1): 016401    DOI: 10.1088/0256-307X/29/1/016401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Cavitating Flow over a Mini Hydrofoil
LUO Xian-Wu1**, JI Bin1, ZHANG Yao2, XU Hong-Yuan1
1State Key Laboratory for Hydroscience and Engineering, Tsinghua University, Beijing 100084
2China Ship Development and Design Center, Wuhan 430064
Cite this article:   
LUO Xian-Wu, JI Bin, ZHANG Yao et al  2012 Chin. Phys. Lett. 29 016401
Download: PDF(566KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We consider a cavitating flow over a mini hydrofoil (foil profile: Clark-Y-11.7) having a 14 mm chord length in a cavitation tunnel at various cavitation numbers. Experimental observations show that cavitating flows over a miniature hydrofoil display several types of cavitation behavior, such as cavitation inception, sheet cavitation, cloud cavitation and super cavitation with the decreasing cavitation number. Under the same cavitation conditions, cavitation over a mini hydrofoil would be suppressed in comparison to cavitation over an ordinary hydrofoil. This cavitation scale effect is suspected to be caused by the Reynolds number.
Keywords: 64.70.Fm      47.55.Ca     
Received: 21 June 2011      Published: 07 February 2012
PACS:  64.70.fm (Thermodynamics studies of evaporation and condensation)  
  47.55.Ca (Gas/liquid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/1/016401       OR      https://cpl.iphy.ac.cn/Y2012/V29/I1/016401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Xian-Wu
JI Bin
ZHANG Yao
XU Hong-Yuan
[1] Luo X W, Nishi M and Yoshida K 2003 5th Int. Symposium on Cavitation (Osaka, Japan 1–4 November 2003)
[2] Holl J W and Wislicenus G F 1961 J. Basic Eng. 83 385
[3] Luo X W, Liu S H, Shao J and Xu H Y 2006 J. Tsinghua Univ. 46 1451
[4] Luo X W 2004 PhD Dissertation (Kitakyushu: Kyushu Institute of Technology)
[5] Zhang B 2009 PhD Dissertation (Beijing: Beijing Institute of Technology)
[6] Li J W, Yang F, Li Y and Liu S H 2004 Pump Technol. 4 10
[7] Yuan H J, Shao J, Liu S H and Wu Y L 2008 J. Eng. Thermophys. 29 1852
[8] Zhang M D, Wang G Y, Dong Z Q 2008 J. Eng. Thermophys. 29 71
[9] Li X B, Wang G Y and Zhang M D 2006 J. Eng. Thermophys. 27 426
[10] Arndt R E A, Balas G J and Wosnik M 2005 JSME Int. J. B 48 334
Related articles from Frontiers Journals
[1] Hagar Alm El-Din, ZHANG Yu-Sheng, Medhat Elkelawy. A Computational Study of Cavitation Model Validity Using a New Quantitative Criterion[J]. Chin. Phys. Lett., 2012, 29(6): 016401
[2] TAN Lei, CAO Shu-Liang**, WANG Yu-Ming, ZHU Bao-Shan. Numerical Simulation of Cavitation in a Centrifugal Pump at Low Flow Rate[J]. Chin. Phys. Lett., 2012, 29(1): 016401
[3] HUANG Biao, WANG Guo-Yu** . Evaluation of a Filter-Based Model for Computations of Cavitating Flows[J]. Chin. Phys. Lett., 2011, 28(2): 016401
[4] JI Bin, LUO Xian-Wu, ZHANG Yao, RAN Hong-Juan, XU Hong-Yuan, WU Yu-Lin. A Three-Component Model Suitable for Natural and Ventilated Cavitation[J]. Chin. Phys. Lett., 2010, 27(9): 016401
[5] ZHANG Yao, LUO Xian-Wu, JI Bin, LIU Shu-Hong, WU Yu-Lin, XU Hong-Yuan. A Thermodynamic Cavitation Model for Cavitating Flow Simulation in a Wide Range of Water Temperatures[J]. Chin. Phys. Lett., 2010, 27(1): 016401
[6] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 016401
Viewed
Full text


Abstract