Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 080501    DOI: 10.1088/0256-307X/28/8/080501
GENERAL |
Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map
WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024
Cite this article:   
WANG Xing-Yuan, QIN Xue, XIE Yi-Xin 2011 Chin. Phys. Lett. 28 080501
Download: PDF(5645KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We extend a class of a one-dimensional smooth map. We make sure that for each desired interval of the parameter the map's Lyapunov exponent is positive. Then we propose a novel parameter perturbation method based on the good property of the extended one-dimensional smooth map. We perturb the parameter r in each iteration by the real number xi generated by the iteration. The auto-correlation function and NIST statistical test suite are taken to illustrate the method's randomness finally. We provide an application of this method in image encryption. Experiments show that the pseudo-random sequences are suitable for this application.
Keywords: 05.45.Ac      05.45.Pq      05.45.Gg     
Received: 09 November 2010      Published: 28 July 2011
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/080501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/080501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xing-Yuan
QIN Xue
XIE Yi-Xin
[1] Kocarev L et al 2003 IEEE Trans. Circuits Syst. 50 123
[2] Larrondo H A et al 2006 Phys. Lett. A 352 421
[3] Wang X Y et al 2009 Commun. Nonlinear Sci. Numer. Simul. 14 574
[4] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[5] Pecora L M and Carroll T L 1991 Phys. Rev. A 44 2373
[6] Bateni H G et al 1994 IEEE Trans. Commun. 42 1524
[7] Robert M 1989 Cryptologia 13 29
[8] Wang X Y and Wang X J 2008 Int. J. Mod. Phys. C 9 5
[9] Ling C and Sun S G 1998 IEEE Trans. Commun. 46 1433
[10] Li P et al 2007 Chaos, Solitons Fractals 32 1867
[11] Fryska S T and Zohdy M 1992 Phys. Lett. A 166 340
[12] Cernak J 1996 Phys. Lett. A 214 151
[13] Ott E 2002 Chaos in Dynamical Systems (Cambridge: Cambridge University)
[14] Aguirregabiria J 2009 Chaos, Solitons Fractals 42 2531
[15] Singer D 1978 SIAM J. Appl. Math. 35 260
[16] Jackson E A 1991 Perspectives of Nonlinear Dynamics (Cambridge: Cambridge University)
[17] Zhou H and Ling X T 1997 Int. J. Bifurcation Chaos 7 205
[18] Li P et al 2007 Stud. Comput. Intell. 37 667
[19] Kohda T et al 1997 IEEE Trans. Inform. Theor. 43 105
Related articles from Frontiers Journals
[1] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 080501
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 080501
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 080501
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 080501
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 080501
[7] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 080501
[8] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 080501
[9] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 080501
[10] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 080501
[11] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 080501
[12] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 080501
[13] JIANG Nan**, CHEN Shi-Jian . Chaos Control in Random Boolean Networks by Reducing Mean Damage Percolation Rate[J]. Chin. Phys. Lett., 2011, 28(4): 080501
[14] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 080501
[15] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 080501
Viewed
Full text


Abstract