Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 080502    DOI: 10.1088/0256-307X/28/8/080502
GENERAL |
Size Model of Critical Temperature for Grain Growth in Nano V and Au
LU Yun-Bin1,2, LIAO Shu-Zhi1**, PENG Hao-Jun1, ZHANG Chun3, ZHOU Hui-Ying4, XIE Hao-Wen1, OUYANG Yi-Fang5, ZHANG Bang-Wei6,7
1Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081
2College of Mathematics and Physics, University of South China, Hengyang 421001
3College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081
4Computer and Information Engineering School, Central South University of Forestry and Technology, Changsha 410004
5Department of Physics, Guangxi University, Nanning 530004
6Department of Applied Physics, Hunan University, Changsha 410082
7International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110015
Cite this article:   
LU Yun-Bin, LIAO Shu-Zhi, PENG Hao-Jun et al  2011 Chin. Phys. Lett. 28 080502
Download: PDF(588KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The intrinsic thermodynamical factors that dominate the stability of nanocrystallines are investigated through the microcosmic process of grain growth. The results suggest that nanocrystallines grows at a certain temperature and the critical temperature is determined by the vacancy formation energy and diffusion activation energy of the nanocrystallines. Based on the hypothesis, a simple model is proposed to predict the size-dependent critical temperature of grain growth. Within this model, we investigate the thermal stability of nanocrystallines V and Au, compared with the results available. It is shown that the critical temperature decreases with decreasing size, showing an evident size effect. The research reveals that the thermal stability is dependent on the energetic state of the nanocrystallines and the mobility of the inner atoms.
Keywords: 05.70.Jk      82.60.Cx      81.10.Aj     
Received: 23 September 2010      Published: 28 July 2011
PACS:  05.70.Jk (Critical point phenomena)  
  82.60.Cx (Enthalpies of combustion, reaction, and formation)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/080502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/080502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LU Yun-Bin
LIAO Shu-Zhi
PENG Hao-Jun
ZHANG Chun
ZHOU Hui-Ying
XIE Hao-Wen
OUYANG Yi-Fang
ZHANG Bang-Wei
[1] Birringer R, Herr U and Gleiter H 1986 Trans. Jpn. Int. Met. Suppl 43 27
[2] Andres R P, Averback R S, Brown W L, Brus L E, Goddard W A, Kaldor K and Siegel R W 1989 J. Mater. Res. 4 704
[3] Tjong S C and Chen H 2004 Mater. Sci. Engin. R 45 1
[4] Atkinson H V 1988 Acta Metall. 36 469
[5] Lu K 1991 Scripta Metallurgica et Materialia 25 2047
[6] Gleiter H 1989 Prog. Mater. Sci. 33 223
[7] Inami T, Okuda S, Maeta H et al 1998 Mater. Trans. JIM 39 1029
[8] Inami T, Kobiyama M, Okuda S et al 1999 Nanostruct. Mater. 12 657
[9] Würschum R, Gruss S, Gissibl B et al 1997 Nanostruct. Mater. 9 615
[10] Würschum R, Reimann K, Gruss S et al 1997 Phil. Mag. B 76 407
[11] Wei M Z, Xiao S F, Yuan X J et al 2006 Sci. Chin. E 36 960
[12] Li L M, Song X Y, Zhang J X et al 2007 Prog. Nature Sci. 17 1316
[13] Gleiter H 2000 Acta Mater. 48 1
[14] Jin S F, Wang W M and Zhou J K 2005 Chin. Phys. 14 2565
[15] Estrin Y, Gottstein G and Shvindlerman L S 1999 Scripta Materialia 41 385
[16] Schmitten W, Haasen P and Häßner F 1960 Z. Metall. 51 101
[17] Lücke K and Gottstein G 1981 Acta Metall. 29 779
[18] Estrin Y and LUcke K 1981 Acta Metall. 29 791
[19] Kraftmakher Y 1998 Phys. Rep 79 299
[20] Yang C C and Li S 2007 Phys. Rev. B 75 165413
[21] Korhonen T, Puska M J and Nieminen R M 1995 Phys. Rev. B 51 9526
[22] Zhang C J and Alavi A 2005 J. Am. Chem. Soc. 127 9808
[23] Shibata T, Bunker B A, Zhang Z, Meisel D, Vardeman II C F and Gezelter J D 2002 J. Am. Chem. Soc. 124 11989
[24] Phillpot S R, Wang J, Wolf D et al 1995 Mater. Sci. Engin. A 204 76
[25] Keblinski P, Phillpot S R, Wolf D et al 1997 Nanostruct. Mater. 9 651
[26] http://www.webelements.com/
[27] Jiang Q, Li J C and Chi B Q 2002 Chem. Phys. Lett. 366 551
Related articles from Frontiers Journals
[1] JI Xiao-Rui, YANG Xiao-Hong. Removing Impurity of cBN Crystal Prepared at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 080502
[2] LI Zhe-Yang, **, HAN Ping, LI Yun, NI Wei-Jiang, BAO Hui-Qiang, LI Yu-Zhu . Epitaxial Growth of 4H-SiC on 4° Off-Axis Substrate for Power Devices[J]. Chin. Phys. Lett., 2011, 28(9): 080502
[3] GAO Zhao-Shun, ZHANG Xian-Ping, WANG Dong-Liang, QI Yan-Peng, WANG Lei, CHENG Jun-Sheng, WANG Qiu-Liang, MA Yan-Wei**, AWAJI Satoshi, WATANABE Kazuo . Fabrication and Properties of Aligned Sr0.6K0.4Fe2As2 Superconductors by High Magnetic Field Processing[J]. Chin. Phys. Lett., 2011, 28(6): 080502
[4] LI Shang-Sheng, LI Xiao-Lei, MA Hong-An, SU Tai-Chao, XIAO Hong-Yu, HUANG Guo-Feng, LI Yong, ZHANG Yi-Shun, JIA Xiao-Peng, ** . Reaction Mechanism of Al and N in Diamond Growth from a FeNiCo-C System[J]. Chin. Phys. Lett., 2011, 28(6): 080502
[5] GUO Xiao-Song, BAO Zhong, ZHANG Shan-Shan, XIE Er-Qing** . A Novel Model of the H Radical in Hot-Filament Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(2): 080502
[6] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 080502
[7] HOU Zhao-Yang, LIU Li-Xia, LIU Rang-Su, TIAN Ze-An. Tracing Nucleation and Growth on Atomic Level in Amorphous Sodium by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(3): 080502
[8] FU Xin, JIANG Jun, LIU Chao, YU Zhi-Yang, Steffan LEA, YUAN Jun,. Re-entrant-Groove-Assisted VLS Growth of Boron Carbide Five-Fold Twinned Nanowires[J]. Chin. Phys. Lett., 2009, 26(8): 080502
[9] XIONG Juan, GU Hao-Shuang, HU Kuan, HU Ming-Zhe. Fabrication and Frequency Response Characteristics of AlN-Based Solidly Mounted Resonator[J]. Chin. Phys. Lett., 2009, 26(4): 080502
[10] ZHOU Sheng-Guo, ZANG Chuan-Yi, MA Hong-An, HU Qiang, LI Xiao-Lei, LI Shang-Sheng, ZHANG He-Min, JIA Xiao-Peng,. HPHT Synthesis of Different Shape Coarse-Grain Diamond Single Crystals[J]. Chin. Phys. Lett., 2009, 26(4): 080502
[11] LIANG Zhong-Zhu, LIANG Jing-Qiu, JIA Xiao-Peng. Effects of NaN3 Added in Fe-C System on Inclusion and Impurity of Diamond Synthesized at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2009, 26(3): 080502
[12] LIU Xiao-Bing, JIA Xiao-Peng, MA Hong-An, HAN Wei, GUO Xin-Kai, JIA Hong-Sheng. HPHT Synthesis of High-Quality Diamond Single Crystals with Micron Grain Size[J]. Chin. Phys. Lett., 2009, 26(3): 080502
[13] TIAN Yu, JIA Xiao-Peng, ZANG Chuan-Yi, LI Rui, LI Shang-Sheng, XIAO Hong-Yu, ZHANG Ya-Fei, HUANG Guo-Feng, HAN Qi-Gang, MA Li-Qiu, LI Yong, CHEN Xiao-Zhou, ZHANG Cong, MA Hong-An. Finite Element Analysis of Convection in Growth Cell for Diamond Growth Using Ni-Based Solvent[J]. Chin. Phys. Lett., 2009, 26(2): 080502
[14] HU Bin, LI Fang, ZHOU Hou-Shun. Robustness of Complex Networks under Attack and Repair[J]. Chin. Phys. Lett., 2009, 26(12): 080502
[15] DONG Wen, GUO Xiang, WANG Si-Zhen, WANG Zhen-Lin, MINGNai-Ben. Fabrication of Two-Dimensional Arrays of Micron-Sized Gold Rings Based on Preferential Nucleation at Reentrant Sites[J]. Chin. Phys. Lett., 2008, 25(8): 080502
Viewed
Full text


Abstract