Chin. Phys. Lett.  2011, Vol. 28 Issue (8): 080401    DOI: 10.1088/0256-307X/28/8/080401
GENERAL |
Feasibility for Testing the Equivalence Principle with Optical Readout in Space
GAO Fen, ZHOU Ze-Bing**, LUO Jun
School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
GAO Fen, ZHOU Ze-Bing, LUO Jun 2011 Chin. Phys. Lett. 28 080401
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A concept of testing the equivalence principle with optical readout in space (TEPO) has been proposed [J. Jpn. Soc. Microgravity Appl. 25 (2008) 423]. We further discuss the feasibility of TEPO using LISA (laser interferometer space antenna) Pathfinder technologies, such as a heterodyne interferometer, an inertial sensor, drag-free control and discharge technique, and determine that the equivalence principle could be tested at 8×10−17 with one day integration.
Keywords: 04.80.-y      04.80.Nn     
Received: 16 May 2011      Published: 28 July 2011
PACS:  04.80.-y (Experimental studies of gravity)  
  04.80.Nn (Gravitational wave detectors and experiments)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/8/080401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I8/080401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GAO Fen
ZHOU Ze-Bing
LUO Jun
[1] Damour T and Polyakov A M 1994 Nucl. Phys. B 423 532
[2] Fayet P 1996 Class. Quantum Grav. 13 A19
[3] Nieto M M et al 1987 Phys. Rev. D 36 3688
[4] Scherk J 1979 Phys. Lett. B 88 265
[5] Sumner T J et al 2007 Adv. Space Res. 39 254
[6] Nobili A M et al 1996 Class. Quantum Grav. 13 A197
[7] Touboul P et al 2001 Class. Quantum Grav. 18 2487
[8] Karsten D et al 2003 Class. Quantum Grav. 20 S1
[9] McNamara P et al 2008 Class. Quantum Grav. 25 114034
[10] Luo J et al 2008 J. Jpn. Soc. Micrograv. Appl. 25 423
[11] Lockerbie N A et al 1993 Class. Quantum Grav. 10 2419
[12] Hudson D et al 2007 Adv. Space Res. 39 307
[13] Wand V et al 2006 Class. Quantum Grav. 23 S159
[14] Pradels G et al 2003 Class. Quantum Grav. 20 2677
[15] Bender P et al 1998 LISA Pre-Phase A Report (Second Edition)
[16] Numata K et al 2004 Phys. Rev. Lett. 93 250602
[17] Audley H et al 2011 Class. Quantum Grav. 28 094003
[18] Armano M et al 2005 Class. Quantum Grav. 22 S501
[19] Bonny L S 2003 Class. Quantum Grav. 20 S239
[20] Touboul P 2009 Space Sci. Rev. 148 455
[21] Thébault E et al 2010 Space Sci. Rev. 155 95
[22] Jafry Y et al 1997 Class. Quantum Grav. 14 1567
[23] Carbone L et al 2007 Phys. Rev. D 76 102003
[24] Carbone L et al 2005 Class. Quantum Grav. 22 S509
[25] Braginsky V B and Manukin A B 1977 Measurement of Weak Forces in Physic Experiments (Chicago: University of Chicago)
[26] Pollack S E et al 2008 Phys. Rev. Lett. 101 071101
Related articles from Frontiers Journals
[1] ZHOU Lin, , XIONG Zong-Yuan, , YANG Wei, , TANG Biao, , PENG Wen-Cui, , WANG Yi-Bo, , XU Peng, , WANG Jin, ZHAN Ming-Sheng, ** . Measurement of Local Gravity via a Cold Atom Interferometer[J]. Chin. Phys. Lett., 2011, 28(1): 080401
[2] LI Fang-Yu, YANG Nan. Phase and Polarization State of High-Frequency Relic Gravitational Waves[J]. Chin. Phys. Lett., 2009, 26(5): 080401
[3] TU Hai-Bo, BAI Yan-Zheng, ZHOU Ze-Bing, LIANG Yu-Rong, LUO Jun. Measurement of Magnetic Properties of an Inertial Sensor with a Torsion Balance[J]. Chin. Phys. Lett., 2009, 26(4): 080401
[4] GONG Tian-Xi, WANG Yong-Jiu. Orbital Precession Effect in the Reissner-Nordström Field with a Global Monopole[J]. Chin. Phys. Lett., 2009, 26(3): 080401
[5] FU Jian, TANG Shao-Fang. Possible Approach to Improve Sensitivity of a Michelson Interferometer[J]. Chin. Phys. Lett., 2007, 24(8): 080401
[6] LI Fang-Yu, CHEN Ying, WANG Ping. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity[J]. Chin. Phys. Lett., 2007, 24(12): 080401
[7] CHEN Ju-Hua, WANG Yong-Jiu. Geodetic Precession in Schwarzschild Spacetime Surrounded by Quintessence[J]. Chin. Phys. Lett., 2007, 24(11): 080401
[8] LEE Zhi-Jun, WAN Zhen-Zhu,. Noises in Detecting Relic Gravitational Wave[J]. Chin. Phys. Lett., 2006, 23(12): 080401
[9] LUO Feng, LIU Hong-Ya. Exploring Extra Dimensions in Spectroscopy Experiments[J]. Chin. Phys. Lett., 2006, 23(11): 080401
[10] LI Fang-Yu, YANG Nan. Resonant Interaction Between a Weak Gravitational Wave and a Microwave Beam in the Double Polarized States Through a Static Magnetic Field[J]. Chin. Phys. Lett., 2004, 21(11): 080401
[11] LI Fang-Yu, WU Zhang-Han, ZHANG Yi. Coupling of a Linearized Gravitational Wave to Electromagnetic Fields and Relevant Noise Issues[J]. Chin. Phys. Lett., 2003, 20(11): 080401
[12] ZHAO Peng-Fei, HUANG Yu-Ying, TANG Meng-Xi. A New Ultra-low Frequency Passive Vertical Vibration Isolation System [J]. Chin. Phys. Lett., 2002, 19(2): 080401
[13] LI Fang-Yu, TANG Meng-Xi. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave[J]. Chin. Phys. Lett., 2001, 18(12): 080401
[14] LI Xin-Zhou, CHENG Hong-Bo, Chung-I Kuo . D-Stars as Gravitational Lenses[J]. Chin. Phys. Lett., 2001, 18(1): 080401
[15] LI Fang-yu, TANG Meng-xi, WEN De-hua. Coherent Resonance of a Strong Electromagnetic Wave Beam to a Standing Gravitational Wave [J]. Chin. Phys. Lett., 1999, 16(1): 080401
Viewed
Full text


Abstract