Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 029802    DOI: 10.1088/0256-307X/28/2/029802
Original Articles |
Inflation and Singularity in Einstein–Cartan Theory
HUANG Zeng-Guang1**, FANG Wei2,4, LU Hui-Qing3,4**
1School of Science, Huaihai Institute of Technology, Lianyungang 222005
2Department of Physics, Shanghai Normal University, Shanghai 200234
3Department of Physics, Shanghai University, Shanghai 200444
4The Shanghai Key Lab of Astrophysics, Shanghai Normal University, Shanghai 200234
Cite this article:   
HUANG Zeng-Guang, FANG Wei, LU Hui-Qing 2011 Chin. Phys. Lett. 28 029802
Download: PDF(503KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Within the framework of Einstein–Cartan theory, we obtain a general condition leading to singularity and inflation for all Bianchi cosmological models. If the spin energy is smaller than anisotropic energy density (i.e. S2−σ2≤0), the Universe can not avoid singularity. If S2−σ2>-ρv/2 (ρv is vacuum energy density), the Universe can undergo an inflation phase. Examples of Bianchi type−IX, I and V cosmological models are discussed.
Keywords: 98.80.-k      98.80.Cq      03.65.Pm     
Received: 08 October 2010      Published: 30 January 2011
PACS:  98.80.-k (Cosmology)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
  03.65.Pm (Relativistic wave equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/029802       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/029802
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Zeng-Guang
FANG Wei
LU Hui-Qing
[1] Hehl F W, Heyde P V, Kerlick G D and Nester J M 1976 Rev. Mod. Phys. 48 393
[2] Tsampartis M 1979 Phys. Lett. A 75 27
[3] Lu H Q and Cheng K S 1995 Class. Quant. Grav. 12 2755
[4] Trautman A 1973 Nature 242 7
[5] Trautman A 1975 Ann. N. Y. Acad. Sci. 262 241
[6] Tsoubelis D 1979 Phys. Rev. D 20 3004
[7] Raychaudhuri A K 1975 Phys. Rev. D 12 952
[8] Kong K H, Cheung P C H, Lu H Q and Cheng K S 1999 Astrophys. Space Sci. 260 521
[9] Obukhov Yu N and Korotky V A 1987 Class. Quant. Grav. 4 1633
[10] Maeda K 1988 Proc. Fifth Marcel Grossmann on General Relativity (Perth Australia) 145
[11] Wald R M 1983 Phys. Rev. D 28 2118
[12] Borzeszkowski H H V and Miiller V 1978 Ann. der Physik(Leipzig) 7 361
[13] Martinez-Gonzalez E and Jones B J T 1986 Phys. Lett. B 167 37
[14] Barrow J 1977 Mon. Not. R. Astron. Soc. 178 625
[15] Lu H Q, Harko T and Mak M K 2001 Int. J. Mod. Phys. D 10 315
[16] Lu H Q Proceedings of the 21st Century Chinese Astronomy Conference (Hong Kong 1–4 August 1996) p 475
[17] Brechet S D, Hobson M P and Lasenby A N 2007 Class. Quantum Grav. 24 6329
[18] Brechet S D, Hobson M P and Lasenby A N 2008 Class. Quantum Grav. 25 245016
[19] Berredo-Peixoto G de and Freitas E A de 2009 Class. Quantum Grav. 26 175015
[20] Fang W, Huang Z G and Lu H Q 2010 arXiv.1011.2047(hep-th)
[21] Binney J and Tremaine S 1987 Galactic Dynamics (Princeton: Princeton University)
Related articles from Frontiers Journals
[1] R. K. Tiwari**, D. Tiwari, Pratibha Shukla. LRS Bianchi Type-II Cosmological Model with a Decaying Lambda Term[J]. Chin. Phys. Lett., 2012, 29(1): 029802
[2] R. K. Tiwari*, S. Sharma** . Bianchi Type-I String Cosmological Model with Bulk Viscosity and Time-Dependent Λ term[J]. Chin. Phys. Lett., 2011, 28(9): 029802
[3] Mubasher Jamil*, D. Momeni** . Evolution of the Brans–Dicke Parameter in Generalized Chameleon Cosmology[J]. Chin. Phys. Lett., 2011, 28(9): 029802
[4] HUANG Zeng-Guang**, FANG Wei, , LU Hui-Qing, . Inflation and Singularity of a Bianchi Type-VII0 Universe with a Dirac Field in the Einstein–Cartan Theory[J]. Chin. Phys. Lett., 2011, 28(8): 029802
[5] Atul Tyagi*, Keerti Sharma . Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity[J]. Chin. Phys. Lett., 2011, 28(8): 029802
[6] N. P. Gaikwad**, M. S. Borkar, S. S. Charjan . Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation[J]. Chin. Phys. Lett., 2011, 28(8): 029802
[7] Hassan Amirhashchi, Anirudh Pradhan, **, Bijan Saha . An Interacting Two-Fluid Scenario for Dark Energy in an FRW Universe[J]. Chin. Phys. Lett., 2011, 28(3): 029802
[8] R. K. Tiwari, Sonia Sharma** . Non Existence of Shear in Bianchi Type-III String Cosmological Models with Bulk Viscosity and Time−Dependent Λ Term[J]. Chin. Phys. Lett., 2011, 28(2): 029802
[9] Abdussattar**, S. R. Prajapati** . Friedman–Robertson–Walker Models with Late-Time Acceleration[J]. Chin. Phys. Lett., 2011, 28(2): 029802
[10] CHEN Ju-Hua, **, ZHOU Sheng, WANG Yong-Jiu, . Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2011, 28(2): 029802
[11] WANG Hua-Wen, CHENG Hong-Bo* . Virial Relation for Compact Q-Balls in the Complex Signum-Gordon Model[J]. Chin. Phys. Lett., 2011, 28(12): 029802
[12] Ujjal Debnath . Modified Chaplygin Gas with Variable G and Λ[J]. Chin. Phys. Lett., 2011, 28(11): 029802
[13] YANG Rong-Jia, QI Jing-Zhao, YANG Bao-Zhu . Restrictions on Purely Kinetic K-Essence[J]. Chin. Phys. Lett., 2011, 28(10): 029802
[14] Koijam Manihar Singh*, Kangujam Priyokumar Singh** . Cosmic String Universes Embedded with Viscosity[J]. Chin. Phys. Lett., 2011, 28(10): 029802
[15] Marina-Aura Dariescu**, Ciprian Dariescu, Ovidiu Buhucianu . Charged Scalars in Transient Stellar Electromagnetic Fields[J]. Chin. Phys. Lett., 2011, 28(1): 029802
Viewed
Full text


Abstract