Original Articles |
|
|
|
|
Friedman–Robertson–Walker Models with Late-Time Acceleration |
Abdussattar**, S. R. Prajapati2**
|
Department of Mathematics, Faculty of Science, Banaras Hindu University, Varanasi-221005, India
|
|
Cite this article: |
Abdussattar, S. R. Prajapati 2011 Chin. Phys. Lett. 28 029803 |
|
|
Abstract In order to account for the observed cosmic acceleration, a modification of the ansatz for the variation of density in Friedman–Robertson–Walker (FRW) FRW models given by Islam is proposed. The modified ansatz leads to an equation of state which corresponds to that of a variable Chaplygin gas, which in the course of evolution reduces to that of a modified generalized Chaplygin gas (MGCG) and a Chaplygin gas (CG), exhibiting late-time acceleration.
|
Keywords:
98.80.-k
95.36.-x
98.80.Cq
95.35.-d
|
|
Received: 14 July 2010
Published: 30 January 2011
|
|
PACS: |
98.80.-k
|
(Cosmology)
|
|
95.36.-x
|
|
|
98.80.Cq
|
(Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))
|
|
95.35.-d
|
|
|
|
|
|
[1] Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559
[2] Sahni V and Starobinsky A 2000 Int. J. Mod. Phys. D 9 373
[3] Padmanabhan T 2003 Phys. Rep. 380 235
[4] Perlmutter S et al 1999 Astrophys. J. 517 565
[5] Reiss A G et al 1998 Astron. J. 116 1009
[6] Kowalski M et al 2008 Astrophys. J. 686 749
[7] Amanullah R et al 2010 arXiv:1004.1711
[8] Spergel D N et al 2003 Astrophys. J. Suppl. 148 175
[9] Spergel D N et al 2007 Astrophys. J. Suppl. 170 377
[10] Wang Y and Mukherjee P 2006 Astrophys. J. 650 1
[11] Bond J R, Efstathiou G and Tegmark M 1997 Mon. Not. Roy. Astron. Soc. 291 L33
[12] Vishwakarma R G 2002 Mon. Not. R. Astron. Soc. 331 776
[13] Ratra B and Peebles P J E 1988 Phys. Rev. D 37 3406
[14] Wetterich C 1988 Nucl. Phys. B 302 668
[15] Caldwell R R, Dave R and Steinhardt P J 1998 Phys. Rev. Lett. 80 1582
[16] Zlatev I, Wang L M and Steinhardt P J 1999 Phys. Rev. Lett. 82 896
[17] Armendariz-Picon C, Mukhanov V F and Steinhardt P J 2000 Phys. Rev. Lett. 85 4438
[18] Sen A 2002 J. High Energy Phys. 0207 065
[19] Padmanabhan T 2002 Phys. Rev. D 66 021301
[20] Caldwell R R 2002 Phys. Lett. B 545 23
[21] Nojiri S and Odintsov S 2003 Phys. Lett. B 562 147
[22] Arkani-Hamed N et al 2004 J. High Energy Phys. 0405 074
[23] Pizza F and Tsujikawa S 2004 J. Cocmol. Astropart. Phys. 0407 004
[24] Feng B, Wang X L and Zhang X M 2005 Phys. Lett. B 607 35
[25] Guo Z K et al 2005 Phys. Lett. B 608 177
[26] Anisimov A, Babichev E and Vikman 2005 J. Cosmol. Astropart. Phys. 0506 006
[27] Setare M R, Sadeghi J and Amani A R 2008 Phys. Lett. B 660 299
[28] Boyle L A, Caldwell R R and Kamionkowski M 2002 Phys. Lett. B 545 17
[29] Moffat J W 2005 astro-ph/0505326
[30] Hoyle F and Vogeley M S 2004 Astrophys. J. 607 751
[31] Kamenshchik A Y, Moschella U and Pasquier V 2001 Phys. Lett. B 511 265
[32] Bento M C, Bertolami O and Sen A 2002 Phys. Rev. D 66 043507
[33] Chaplygin S 1904 Sci. Mem. Moscow Univ. Math. Phys. 21 1
[34] Tsien H S 1939 J. Aeron. Sci. 6 399
[35] Von Karman T 1941 J. Aeron. Sci. 8 337
[36] Stanyukovich K ( Unsteady Motion of Continuos Media , Pergamon, Oxford, UK 1960)
[37] Bordermann M and J Hoppe J 1993 Phys. Lett. B 317 315
[38] Fabris J C, Gonsalves S V B and de Souza P E 2002 Gen. Relativ. Gravit. 34 53
[39] Novello M et al 2005 Phys. Rev. D 71 043515
[40] Islam J N 1992 An Introduction to Mathematical Cosmology (Cambridge: Cambridge University)
[41] Guo Z K and Zhang Y Z 2007 Phys. Lett. B 645 326
[42] Sethi G et al 2006 Int. J. Mod. Phys. D 15 1089
[43] Yang X Y et al 2007 Chin. Phys. Lett. 24 302
[44] Lu J 2009 Phys. Lett. B 680 404
[45] Benaoum H B 2002 hep-th/0205140
[46] Debnath U, Banerjee A and Sen A A 2004 Class. Quantum Gravit. 21 5609
[47] Kamenshchik A, Moschella U and Pasquier V 2001 Phys. Lett. B 511 265
[48] Gorini V et al 2004 gr-qc/0403062
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|