Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 024702    DOI: 10.1088/0256-307X/28/2/024702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Gravity-Driven Instability in a Liquid Film Overlying an Inhomogeneous Porous Layer
ZHAO Si-Cheng1, LIU Qiu-Sheng1**, NGUYEN-THI Henri2, BILLIA Bernard2
1Key Laboratory of Microgravity, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190
2IM2NP, UMR CNRS 6137, Universitéd'Aix-Marseille III, 13397 Marseille Cedex 20, France
Cite this article:   
ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri et al  2011 Chin. Phys. Lett. 28 024702
Download: PDF(499KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new model consisting of a liquid film overlying a saturated and inhomogeneous porous layer is investigated. We concentrate on effects of inhomogeneity on transition of instability modes. Influences of the averaged porosity and the gradient of porosity distribution on the instability behaviors of a liquid-porous layer system are emphasized. The average permeability of the porous layer is a key factor to determine the penetration of convection in the system.
Keywords: 47.20.Dr      47.55.dm      47.56.+r     
Received: 18 November 2010      Published: 30 January 2011
PACS:  47.20.Dr (Surface-tension-driven instability)  
  47.55.dm (Thermocapillary effects)  
  47.56.+r (Flows through porous media)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/024702       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/024702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Si-Cheng
LIU Qiu-Sheng
NGUYEN-THI Henri
BILLIA Bernard
[1] Bénard H 1900 Rev. Gen. Sci. Pur. Appl. 11 1261
[2] Rayleigh L 1916 Phil. Mag. 32(6) 529
[3] Pearson J R A 1958 J. Fluid Mech. 4 489
[4] Horton C W and Rogers G T 1945 J. Appl. Phys. 16 367
[5] Lapwood E R 1948 Proc. Camb. Philos. Soc. 44 508
[6] Hennenberg M, Saghir M Z, Rednikov A and Legros J C 1997 Transport in Porous Media 27 327
[7] Nield D A and Bejan A 1998 Convection in Porous Media 2nd edn (New York: Springer)
[8] Brinkman H C 1947 Appl. Sci. Res. A 1 27
[9] Chen F and Chen C F 1988 J. Heat Transfer 110 403
[10] Beavers G S and Joseph D D 1967 J. Fluid Mech. 20 197
[11] Straughan B 2001 J. Comput. Phys. 170 320
[12] Desaive T and Lebon G 2001 Phys. Rev. E 64 066304
[13] Worster M G 1991 J. Fluid Mech. 224 335
[14] Zhao S C, Liu R and Liu Q S 2008 Chin. Phys. Lett. 25 620
[15] Zhao S C, Liu Q S, Liu R, Nguyen-Thi H and Billia B 2010 Int. J. Heat Mass Tran. 53 2951
[16] Colinet P, Legros J C and Velarde M G 2001 Nonlinear Dynamics of Surface-Tension-Driven Instabilities (Berlin: Wiley-VCH)
[17] Chen F and Chen C F 1992 J. Fluid Mech. 234 97
[18] Combarnous M A and Bories S A 1975 Adv. Hydrosci. 10 231
[19] Orszag S A 1971 J. Fluid Mech. 50 689
Related articles from Frontiers Journals
[1] Masood Khan*, Zeeshan . MHD Flow of an Oldroyd-B Fluid through a Porous Space Induced by Sawtooth Pulses[J]. Chin. Phys. Lett., 2011, 28(8): 024702
[2] LI Ming-Jun**, CHEN Liang . Magnetic Fluid Flows in Porous Media*[J]. Chin. Phys. Lett., 2011, 28(8): 024702
[3] LI Jian-Hua, YU Bo-Ming** . Tortuosity of Flow Paths through a Sierpinski Carpet[J]. Chin. Phys. Lett., 2011, 28(3): 024702
[4] FENG Yu-Liang, ZHANG Yuan, JI Bing-Yu, MU Wen-Zhi . Micro-acting Force in Boundary Layer in Low-Permeability Porous Media[J]. Chin. Phys. Lett., 2011, 28(2): 024702
[5] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 024702
[6] ZHAO Si-Cheng, LIU Qiu-Sheng, NGUYEN-THI Henri, BILLIA Bernard. Three-Dimensional Linear Instability Analysis of Thermocapillary Return Flow on a Porous Plane[J]. Chin. Phys. Lett., 2010, 27(2): 024702
[7] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 024702
[8] WU Jing-Chun, QIN Sheng-Gao, WANG Yang. Derivation of the Convective Dispersion Equation with Adsorption by Markov Random Ways[J]. Chin. Phys. Lett., 2009, 26(8): 024702
[9] ZENG Li, GUO Hong-Kai, ZUO Guang-Hong, WAN Rong-Zheng, FANGHai-Ping,. Water Transport through Multinanopores Membranes[J]. Chin. Phys. Lett., 2009, 26(3): 024702
[10] LI Lu-Jun, DUAN Li, HU Liang, KANG Qi. Experimental Investigation of Influence of Interfacial Tension on Convection of Two-Layer Immiscible Liquid[J]. Chin. Phys. Lett., 2008, 25(5): 024702
[11] DUAN Li, KANG Qi, HU Wen-Rui. Experimental Study on Liquid Free Surface in Buoyant-Thermocapillary Convection[J]. Chin. Phys. Lett., 2008, 25(4): 024702
[12] ZENG Li, ZUO Guang-Hong, GONG Xiao-Jing, LU Hang-Jun, WANGChun-Lei, WU Ke-Fei, WAN Rong-Zheng,. Water and Ion Permeation through Electrically Charged Nanopore[J]. Chin. Phys. Lett., 2008, 25(4): 024702
[13] ZHAO Si-Cheng, LIU Rong, LIU Qiu-Sheng. Thermocapillary Convection in an Inhomogeneous Porous Layer[J]. Chin. Phys. Lett., 2008, 25(2): 024702
[14] TU Tao, HAO Xiao-Jie, GUO Guo-Ping, GUO Guang-Can. Two-Time Diffusion Process in the Porous Medium[J]. Chin. Phys. Lett., 2007, 24(8): 024702
[15] AA Yan, CAO Zhong-Hua, HU Wen-Rui. Transition to Chaos in the Floating Half Zone Convection[J]. Chin. Phys. Lett., 2007, 24(2): 024702
Viewed
Full text


Abstract