Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 024701    DOI: 10.1088/0256-307X/28/2/024701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate
Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek
Department of Mathematics, The University of Burdwan, Burdwan-713104, West Bengal, India
Cite this article:   
Krishnendu Bhattacharyya, Swati Mukhopadhyay, G. C. Layek 2011 Chin. Phys. Lett. 28 024701
Download: PDF(471KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate.
Keywords: 47.15.Cb      47.65.-d      47.45.Gx     
Received: 09 August 2010      Published: 30 January 2011
PACS:  47.15.Cb (Laminar boundary layers)  
  47.65.-d (Magnetohydrodynamics and electrohydrodynamics)  
  47.45.Gx (Slip flows and accommodation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/024701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/024701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Krishnendu Bhattacharyya
Swati Mukhopadhyay
G. C. Layek
[1] Blasius H 1908 Zeitschrift für Mathematik und Physik 56 1
[2] Pohlhausen E 1921 Z. Angew. Math. Mech. 1 115
[3] Howarth L 1938 Proc. R. Soc. London A 164 547
[4] Pop I and Takhar H S 1983 Mech. Res. Commun. 10 83
[5] Abu-Sitta A M M 1994 Appl. Math. Comp. 64 73
[6] Wang L 2004 Appl. Math. Comput. 157 1
[7] Cortell R 2005 Appl. Math. Comput. 170 706
[8] Bataller R C 2008 Appl. Math. Comput. 198 333
[9] Cortell R 2008 Chin. Phys. Lett. 25 1340
[10] Sparrow E M and Cess R D 1961 Int. J. Heat Mass Trans. 3 267
[11] Gupta A S 1963 ZAMP 13 324
[12] Riley N 1964 J. Fluid Mech. 18 577
[13] Watanabe T and Pop I 1995 Acta Mech. 108 35
[14] Damseh R A, Duwairi H M and Al-Odat M 2006 Turk. J. Eng. Env. Sci. 30 83
[15] Martin M J and Boyd I D 2006 J. Thermophys. Heat Trans. 20 710
[16] Cao K and Baker J 2009 Int. J. Heat Mass Trans. 52 3829
[17] Aziz A 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 573
[18] Andersson H I 2002 Acta Mech. 158 121
[19] Wang C Y 2002 Chem. Eng. Sci. 57 3745
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 024701
[2] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 024701
[3] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 024701
[4] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 024701
[5] GAO An-Ran, LIU Xiang, GAO Xiu-Li, LI Tie**, GAO Hua-Min, ZHOU Ping, WANG Yue-Lin . A Low Voltage Driven Digital-Droplet-Transporting-Chip by Electrostatic Force[J]. Chin. Phys. Lett., 2011, 28(8): 024701
[6] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 024701
[7] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 024701
[8] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 024701
[9] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 024701
[10] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 024701
[11] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 024701
[12] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[13] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[14] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[15] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 024701
Viewed
Full text


Abstract