Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020201    DOI: 10.1088/0256-307X/28/2/020201
GENERAL |
Symmetry Reduction, Exact Solutions and Conservation Laws of the Modified Kadomtzev–Patvishvili-II Equation
XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059
Cite this article:   
XIN Xiang-Peng, LIU Xi-Qiang, ZHANG Lin-Lin 2011 Chin. Phys. Lett. 28 020201
Download: PDF(407KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Employing the modified Clarkson–Kruskal direct method, we realize the symmetries of the nonlinear (2+1)-dimensional modified Kadomtzev–Patvishvili-II equation. Applying the given Lie symmetry, we obtain the similarity reduction and new exact solutions. We also obtain conservation laws of the equations with the corresponding Lie symmetry.
Keywords: 02.30.Jr      04.20.Jb      05.45.Yv     
Received: 29 April 2010      Published: 30 January 2011
PACS:  02.30.Jr (Partial differential equations)  
  04.20.Jb (Exact solutions)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIN Xiang-Peng
LIU Xi-Qiang
ZHANG Lin-Lin
[1] Meltem L Y, Lee J H and Pashaev O K 2007 Math. Comput. Slmulat. 74 323
[2] Halim A A 2008 Chaos. Solitons and Fractals 36 646
[3] Xin X P, Liu X Q and Zhang L L 2010 Appl. Math. Comput. 215 3669
[4] Yan Z L and Liu X Q 2006 Appl. Math. Comput. 180 288
[5] Wang M L, Li X Z and Zhang J L 2008 Phys. Lett. A 372 417
[6] Zhang L L and Liu X Q 2009 Commun. Theor. Phys. 52 784
[7] Zhang L H and Liu X Q 2006 Commun. Theor. Phys. 45 487
[8] Chen Y and Dong Z Z 2009 Nonlinear Analysis 71 810
[9] Liu N, Liu X Q and Lü H L 2009 Phys. Lett. A 373 214
[10] Nail H and Ibragimov J 2007 Math. Anal. Appl. 333 311
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 020201
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[9] José Antonio Belinchón*. Scale-Covariant Theory of Gravitation Through Self-Similarity[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[10] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 020201
[11] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 020201
[12] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 020201
[13] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 020201
[14] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 020201
[15] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 020201
Viewed
Full text


Abstract