Chin. Phys. Lett.  2011, Vol. 28 Issue (2): 020202    DOI: 10.1088/0256-307X/28/2/020202
GENERAL |
Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method
R. Mokhtari1**, A. Samadi Toodar2, N. G. Chegini2
1Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Department of Mathematics, Tafresh University, Tafresh 39518-79611, Iran
Cite this article:   
R. Mokhtari, A. Samadi Toodar, N. G. Chegini 2011 Chin. Phys. Lett. 28 020202
Download: PDF(893KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrödinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge–Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out.
Keywords: 02.30.Jr      02.60.Cb.     
Received: 20 September 2010      Published: 30 January 2011
PACS:  02.30.Jr (Partial differential equations)  
  02.60.Cb.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/2/020202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I2/020202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
R. Mokhtari
A. Samadi Toodar
N. G. Chegini
[1] Rashid A et al 2010 Appl. Comput. Math. 9 104
[2] Zhou S et al 2010 Math. Comput. Simulat. 80 2362
[3] Wadati M et al 1992 Phys. Soc. Jpn. 61 2241
[4] Ismail M S 2008 Appl. Math. Comput. 196 273
[5] Ismail M S 2008 Math. Comput. Simulat. 78 532
[6] Ismail M S et al 2007 Math. Comput. Simulat. 74 302
[7] Ismail M S et al 2001 Math. Comput. Simulat. 56 547
[8] Tsang S C et al 2004 Math. Comput. Simulat. 66 551
[9] Aydin A et al 2007 Comput. Phys. Commun. 177 566
[10] Borhanifar A et al 2010 Opt. Commun. 283 2026
[11] Bellman R et al 1972 Comput. Phys. 10 40
[12] Shu C et al 1992 Int. J. Numer. Methods Fluids 15 791
[13] Korkmaz A et al 2008 Int. J. Comput. Math. 56 2222
[14] Quan J R et al 1989 Anal. Comput. Chem. Engin. 13 779
[15] Quan J R et al 1989 Anal. Comput. Chem. Engin. 13 1017
[16] Shu C 2000 Differential Quadrature and Its Application in Engineering (London: Springer-Verlag)
[17] Striz A G et al 1995 Acta Mech. 111 85
[18] Shu C et al 2007 Int. J. Numer. Methods Fluids 53 969
[19] Shu C et al 1997 J. Sound Vibr. 204 549
[20] Zong Z et al 2009 Advanced Differential Quadrature Methods (New York: Taylor & Francis)
[21] Yang J 1999 Phys. Rev. E 59 2393
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 020202
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 020202
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 020202
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 020202
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 020202
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 020202
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 020202
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 020202
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 020202
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020202
[13] WU Yong-Qi. Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020202
[14] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 020202
[15] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 020202
Viewed
Full text


Abstract