GENERAL |
|
|
|
|
Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method |
R. Mokhtari1**, A. Samadi Toodar2, N. G. Chegini2
|
1Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran
2Department of Mathematics, Tafresh University, Tafresh 39518-79611, Iran
|
|
Cite this article: |
R. Mokhtari, A. Samadi Toodar, N. G. Chegini 2011 Chin. Phys. Lett. 28 020202 |
|
|
Abstract We the extend application of the generalized differential quadrature method (GDQM) to solve some coupled nonlinear Schrödinger equations. The cosine-based GDQM is employed and the obtained system of ordinary differential equations is solved via the fourth order Runge–Kutta method. The numerical solutions coincide with the exact solutions in desired machine precision and invariant quantities are conserved sensibly. Some comparisons with the methods applied in the literature are carried out.
|
Keywords:
02.30.Jr
02.60.Cb.
|
|
Received: 20 September 2010
Published: 30 January 2011
|
|
|
|
|
|
[1] Rashid A et al 2010 Appl. Comput. Math. 9 104
[2] Zhou S et al 2010 Math. Comput. Simulat. 80 2362
[3] Wadati M et al 1992 Phys. Soc. Jpn. 61 2241
[4] Ismail M S 2008 Appl. Math. Comput. 196 273
[5] Ismail M S 2008 Math. Comput. Simulat. 78 532
[6] Ismail M S et al 2007 Math. Comput. Simulat. 74 302
[7] Ismail M S et al 2001 Math. Comput. Simulat. 56 547
[8] Tsang S C et al 2004 Math. Comput. Simulat. 66 551
[9] Aydin A et al 2007 Comput. Phys. Commun. 177 566
[10] Borhanifar A et al 2010 Opt. Commun. 283 2026
[11] Bellman R et al 1972 Comput. Phys. 10 40
[12] Shu C et al 1992 Int. J. Numer. Methods Fluids 15 791
[13] Korkmaz A et al 2008 Int. J. Comput. Math. 56 2222
[14] Quan J R et al 1989 Anal. Comput. Chem. Engin. 13 779
[15] Quan J R et al 1989 Anal. Comput. Chem. Engin. 13 1017
[16] Shu C 2000 Differential Quadrature and Its Application in Engineering (London: Springer-Verlag)
[17] Striz A G et al 1995 Acta Mech. 111 85
[18] Shu C et al 2007 Int. J. Numer. Methods Fluids 53 969
[19] Shu C et al 1997 J. Sound Vibr. 204 549
[20] Zong Z et al 2009 Advanced Differential Quadrature Methods (New York: Taylor & Francis)
[21] Yang J 1999 Phys. Rev. E 59 2393
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|