Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 114303    DOI: 10.1088/0256-307X/28/11/114303
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas
L. P. Singh, S. D. Ram**, D. B. Singh
Department of Applied Mathematics, Institute of Technology, Banaras Hindu University, Varanasi-221005, India
Cite this article:   
L. P. Singh, S. D. Ram, D. B. Singh 2011 Chin. Phys. Lett. 28 114303
Download: PDF(383KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An analytical approach is used to construct the exact solution of the blast wave problem with generalized geometries in a non-ideal medium. It is assumed that the density ahead of the shock front varies according to a power of distance from the source of the blast wave. Also, an analytical expression for the total energy in a non-ideal medium is derived.
Keywords: 43.28.Mw      47.40.Nm      47.40.-x     
Received: 02 March 2011      Published: 30 October 2011
PACS:  43.28.Mw (Shock and blast waves, sonic boom)  
  47.40.Nm (Shock wave interactions and shock effects)  
  47.40.-x (Compressible flows; shock waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/114303       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/114303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
L. P. Singh
S. D. Ram
D. B. Singh
[1] Taylor J L 1955 Phil. Mag. 46 317
[2] McVittie G C 1953 Proc. Roy. Soc. London 220 339
[3] Sachdev P L, Joseph K T and Haque Enjnul M 2005 Studies in Applied Mathematics 114 325
[4] Singh L P, Husain Akmal and Singh M 2010 Chin. Phys. Lett. 27 014702
[5] Oliveri F and Speciale M P 2002 Int. J. Nonlinear Mech. 37 257
[6] Ray G Deb 1973 Phys. Fluids 16 559
[7] Arora Rajan and Sharma V D 2006 SIAM J. Appl. Math. 66 1825
[8] Sakurai A 1953 J. Phys. Soc. Jpn. 8 662
[9] Sakurai A 1954 J. Phys. Soc. Jpn. 9 256
[10] Rogers M H 1957 J. Astrophys. 125 478
[11] Murata S 2006 Chaos, Solitons and Fractals 28 327
[12] Courant R and Friedrichs K O 1948 Supersonic Flow and Shock Wave (New York: Interscience Publishers)
[13] Whitham G B 1974 Linear and Non-linear Waves (New York: John Wiley & Sons)
[14] Wu C C and Roberts P H 1996 Quart. J. Mech. Appl. Math. 49 501
[15] Singh L P, Ram S D and Singh D B 2011 Ain Shams Engin. J. (in press)
[16] Singh L P, Ram S D and Singh D B 2011 Chaos Solitons & Fractals (in press)
[17] Ashaf S and Schdev P L 1968 Proc. Math. Sci. 71 275
[18] Vishwakarma J P, Srivastava R C and Kumar Arun 1987 Astrophys. Space Sci. 129 45
Related articles from Frontiers Journals
[1] WANG Guo-Lei, LU Xi-Yun. Large-Eddy Simulation of Underexpanded Supersonic Swirling Jets[J]. Chin. Phys. Lett., 2012, 29(6): 114303
[2] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 114303
[3] TENG Hong-Hui**, JIANG Zong-Lin . Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model[J]. Chin. Phys. Lett., 2011, 28(8): 114303
[4] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 114303
[5] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 114303
[6] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 114303
[7] SONG Hai-Feng, LIU Hai-Feng, ZHANG Guang-Cai, ZHAO Yan-Hong. Numerical Simulation of Wave Propagation and Phase Transition of Tin under Shock-Wave Loading[J]. Chin. Phys. Lett., 2009, 26(6): 114303
[8] WU Jing-He, YE Song, HU Dong, YANG Xiang-Dong. Spectral Study of Effects of Aluminium Nanoparticles on Fast Reaction of Nitromethane[J]. Chin. Phys. Lett., 2008, 25(3): 114303
[9] RAN Zheng. Thermo-Hydrodynamic Lattice BGK Schemes with Lie Symmetry Preservation[J]. Chin. Phys. Lett., 2008, 25(11): 114303
[10] FU De-Xun, MA Yan-Wen, LI Xin-Liang. Direct Numerical Simulation of Three-Dimensional Richtmyer--Meshkov Instability[J]. Chin. Phys. Lett., 2008, 25(1): 114303
[11] SHI Yi-Na, QIN Cheng-Sen. Theoretical Prediction of Asymmetrical Jet Formation in Two-Metallic-Flow Collision[J]. Chin. Phys. Lett., 2007, 24(8): 114303
[12] TENG Hong-Hui, ZHAO Wei, JIANG Zong-Lin. A Novel Oblique Detonation Structure and Its Stability[J]. Chin. Phys. Lett., 2007, 24(7): 114303
[13] RAN Zheng. Note on Invariance of One-Dimensional Lattice-Boltzmann Equation[J]. Chin. Phys. Lett., 2007, 24(12): 114303
[14] BAI Jing-Song, LI Ping, TAN Duo-Wang. Simulations of the Instability Experiments in Stratified Cylindrical Shells[J]. Chin. Phys. Lett., 2006, 23(7): 114303
[15] ZHANG Ping, BIAN Bao-Min, LI Zhen-Hua. Fibre-Coupling Zig-Zag Beam Deflection Technology for Investigation of Attenuation Process of Laser-Induced Shock Waves[J]. Chin. Phys. Lett., 2005, 22(9): 114303
Viewed
Full text


Abstract