Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 114701    DOI: 10.1088/0256-307X/28/11/114701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effects of a Premixed Layer on the Richtmyer–Meshkov Instability
TIAN Bao-Lin1, ZHANG Xin-Ting2, QI Jin1**, WANG Shuang-Hu1
1Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100094
2Ecole Centrale de Pekin, Beihang University, Beijing 100191
Cite this article:   
TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin et al  2011 Chin. Phys. Lett. 28 114701
Download: PDF(528KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of a premixed layer on the Richmyer–Meshkov instability (RMI) are studied by setting a density gradient for the first shocked fluid in the RMI problems. The RMI with initial density gradients are simulated by using a high resolution arbitrary Lagrangian–Eulerian method. The effects of density gradient and gradient width are analyzed on the basis of the simulation results for the shock from a light fluid to a heavy fluid and for the shock from a heavy fluid to a light fluid. Overall, the premixed layer can suppress the perturbation growth, and the detailed effects are different depending on the detailed premixed configuration. The width of the premixed layer has a very light influence on the perturbation, while the density gradient has quite a significant effect on two kinds of RMIs.
Keywords: 47.20.Ma      47.40.-x     
Received: 02 July 2011      Published: 30 October 2011
PACS:  47.20.Ma (Interfacial instabilities (e.g., Rayleigh-Taylor))  
  47.40.-x (Compressible flows; shock waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/114701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/114701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Bao-Lin
ZHANG Xin-Ting
QI Jin
WANG Shuang-Hu
[1] Richtmyer R D 1960 Pure Appl. Math. 13 297
[2] Meshkov E E 1970 NASA Tech. Trans. F-13 074
[3] Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445
[4] Tian B, Fu D and Ma Y 2006 Acta Mech Sin. 22 9
[5] Mikaelian K O 1991 Phys. Fluids A 3 2368
[6] Phama T and Meiron D 1993 Phys. Fluids A 5 344
[7] Tian B, Shen W, Jiang S, Wang S and Liu Y 2011 Computers & Fluids 46 113
[8] Tian B, Fu D and Ma Y 2004 Chin. Phys. Lett. 21 1770
[9] Mikaelian K O 2011 Physica D 240 935
[10] Wang L, Ye W and Li Y 2010 Chin. Phys. Lett. 27 025202
[11] Zhang X and Tan D 2009 Chin. Phys. Lett. 26 084703
Related articles from Frontiers Journals
[1] WANG Guo-Lei, LU Xi-Yun. Large-Eddy Simulation of Underexpanded Supersonic Swirling Jets[J]. Chin. Phys. Lett., 2012, 29(6): 114701
[2] TENG Hong-Hui**, JIANG Zong-Lin . Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model[J]. Chin. Phys. Lett., 2011, 28(8): 114701
[3] ZHANG Xu**, LIU Jin-Hong, Jonathan W. N. . A Numerical Study of Temporal Mixing Layer with Three-Dimensional Mortar Spectral Element Method[J]. Chin. Phys. Lett., 2011, 28(6): 114701
[4] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 114701
[5] WANG Li, LU Xi-Yun** . Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2011, 28(3): 114701
[6] L. P. Singh, S. D. Ram**, D. B. Singh . Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2011, 28(11): 114701
[7] PENG Jie, ZHU Ke-Qin. Role of Viscosity Stratification and Insoluble Surfactant in Instability of Two-Layer Channel Flow[J]. Chin. Phys. Lett., 2010, 27(4): 114701
[8] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Two-Dimensional Rayleigh-Taylor Instability in Incompressible Fluids at Arbitrary Atwood Numbers[J]. Chin. Phys. Lett., 2010, 27(2): 114701
[9] WANG Li-Feng, YE Wen-Hua, , LI Ying-Jun. Numerical Simulation of Anisotropic Preheating Ablative Rayleigh-Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(2): 114701
[10] YE Wen-Hua, **, WANG Li-Feng, , HE Xian-Tu, . Jet-Like Long Spike in Nonlinear Evolution of Ablative Rayleigh–Taylor Instability[J]. Chin. Phys. Lett., 2010, 27(12): 114701
[11] ZHANG Xu, TAN Duo-Wang. Direct Numerical Simulation of the Rayleigh-Taylor Instability with the Spectral Element Method[J]. Chin. Phys. Lett., 2009, 26(8): 114701
[12] LI Zhang-Guo, LIU Qiu-Sheng, LIU Rong, HU Wei, DENG Xin-Yu. Influence of Rayleigh-Taylor Instability on Liquid Propellant Reorientation in a Low-Gravity Environment[J]. Chin. Phys. Lett., 2009, 26(11): 114701
[13] LI Fang, YIN Xie-Yuan, YIN Xie-Zhen. Two-Dimensional Wave Motion on the Charged Surface of a Viscous Liquid[J]. Chin. Phys. Lett., 2008, 25(7): 114701
[14] MA Wen-Jie, WANG Yu-Ren, LAN Ding. Role of Convection Flow on the Pattern Formation in the Drying Process of Colloidal Suspension[J]. Chin. Phys. Lett., 2008, 25(4): 114701
[15] FAN Zheng-Feng, LUO Ji-Sheng. Weak Nonlinearity of Ablative Rayleigh--Taylor Instability[J]. Chin. Phys. Lett., 2008, 25(2): 114701
Viewed
Full text


Abstract