Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110501    DOI: 10.1088/0256-307X/28/11/110501
GENERAL |
Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets
WEI Du-Qu1**, LUO Xiao-Shu1, CHEN Hong-Bin2, ZHANG Bo3
1College of Electronic Engineering, Guangxi Normal University, Guilin 541004
2College of Engineering and Information Science, Huaqiao University, Xiamen 361021
3 College of Electric Power, South China University of Technology, Guangzhou 510640
Cite this article:   
WEI Du-Qu, LUO Xiao-Shu, CHEN Hong-Bin et al  2011 Chin. Phys. Lett. 28 110501
Download: PDF(2137KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate how the random long-range interactions affect the synchronization features in networks of inertial ratchets, where each ratchet is driven by a periodic time-dependent external force, under the influence of an asymmetric periodic potential. It is found that for a given coupling strength C, the synchronization of the coupled ratchets is induced as the fraction of random long−range interactions p increases and the ratchet networks reach full synchronization for a larger p. It is also found that the system reaches synchronization more effectively for a stronger coupling strength.
Keywords: 05.60.Cd      89.75.Hc      05.45.Ac      05.45.Xt     
Received: 10 July 2011      Published: 30 October 2011
PACS:  05.60.Cd (Classical transport)  
  89.75.Hc (Networks and genealogical trees)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WEI Du-Qu
LUO Xiao-Shu
CHEN Hong-Bin
ZHANG Bo
[1] Jülicher F, Ajdari A and Prost J 1997 Rev. Mod. Phys. 69 1269 and references therein
[2] Sun L X 2009 Chin. Phys. Lett. 26 040502
[3] Ustinov A V, Coqui C, Kemp A, Zolotaryuk Y and Salerno M 2004 Phys. Rev. Lett. 93 087001
[4] Hastings M B, Olson Reichhardt C J and Reichhardt C 2003 Phys. Rev. Lett. 90 247004
[5] Babič D and Bechinger C 2005 Phys. Rev. Lett. 94 148303
[6] Jung P, Kissner J G and Hünggi P 1996 Phys. Rev. Lett. 76 3436
[7] Qian M, Wang Y and Zhang X J 2003 Chin. Phys. Lett. 20 810
[8] Hänggi P and Bartussek R 1996 Nonlinear Physics of Complex Systems-Current Status and Future Trends in Lecture Notes in Physics vol 476 ed Parisi J, Müller S C and Zimmermann W (Berlin: Springer, )
[9] Ai B Q, Xie H Z and Liu L G 2005 Chin. Phys. Lett. 22 2772
Astumian R D and Hänggi P 2002 Phys. Today 55 33
[10] Mateos J L 2000 Phys. Rev. Lett. 84 258
[11] Mateos J L 2003 Physica A 325 92
[12] Vale R D et al 2000 Science 288 88
[13] Endow S A et al 2000 Nature 406 913
[14] Wang H, Dou S X and Wang P Y 2005 Chin. Phys. Lett. 22 2980
[15] Savel'ev S, Marchesoni F and Nori F 2003 Phys. Rev. Lett. 91 010601
[16] Alberts B 2002 The Molecular Biology of Cell (New York: Garland)
[17] Vincent U E, Kenfack A, Senthilkumar D V, Mayer D and Kurths J 2010 Phys. Rev. E 82 046208
[18] Goko H and Igarashi A 2005 Phys. Rev. E 71 061108
[19] Csahók Z, Family F and Vicsek T 1997 Phys. Rev. E 55 5179
[20] Zheng Z, Hu G and Hu B 2001 Phys. Rev. Lett. 86 2273
[21] Zheng Z, Cross M C and Hu G 2002 Phys. Rev. Lett. 89 154102
Chen H, Wang Q and Zheng Z 2005 Phys. Rev. E 71 031102
Zheng Z and Chen H 2010 Europhys. Lett. 92 30004
[22] Zheng Z 2004 Spatiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear Systems (Beijing: Higher Education Press) (in Chinese)
[23] Watts D J and Strogatz S H 1998 Nature 393 6684
[24] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332
[25] Ma J, Yang L J, Wu Y and Zhang C R 2010 Commun. Theor. Phys 54 583
[26] Wei D Q, Luo X S and Qin Y H 2008 Physica A 387 2155
[27] Qin Y H and Luo X S 2009 Chin. Phys. Lett. 26 078901
[28] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 1329
[29] Wei D Q and Luo X S 2007 Europhys. Lett. 78 68004
[30] Qi F, Hou Z and Xin H 2003 Phys. Rev. Lett. 91 064102
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 110501
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 110501
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 110501
[4] QI Kai,TANG Ming**,CUI Ai-Xiang,FU Yan. The Slow Dynamics of the Zero-Range Process in the Framework of the Traps Model[J]. Chin. Phys. Lett., 2012, 29(5): 110501
[5] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 110501
[6] LI Ping, ZHANG Jie, XU Xiao-Ke, SMALL Michael. Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks[J]. Chin. Phys. Lett., 2012, 29(4): 110501
[7] XIE Zheng, YI Dong-Yun, OUYANG Zhen-Zheng, LI Dong. Hyperedge Communities and Modularity Reveal Structure for Documents[J]. Chin. Phys. Lett., 2012, 29(3): 110501
[8] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 110501
[9] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 110501
[10] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 110501
[11] ZHU Zi-Qi, JIN Xiao-Ling, HUANG Zhi-Long. Search for Directed Networks by Different Random Walk Strategies[J]. Chin. Phys. Lett., 2012, 29(3): 110501
[12] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 110501
[13] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 110501
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 110501
[15] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 110501
Viewed
Full text


Abstract