Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110401    DOI: 10.1088/0256-307X/28/11/110401
GENERAL |
Unification of General Relativity with Quantum Field Theory
NI Jun
Department of Physics, Tsinghua University, Beijing 100084
Cite this article:   
NI Jun 2011 Chin. Phys. Lett. 28 110401
Download: PDF(334KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the frame of quantum field theory, instead of using the action principle, we deduce the Einstein equation from purely the general covariant principle and the homogeneity of spacetime. The Einstein equation is shown to be the gauge equation to guarantee the local symmetry of spacetime translation. Gravity is an apparent force due to the curvature of spacetime resulted from the conservation of energy-momentum. In the action of quantum field theory, only electroweak-strong interactions should be considered with the curved spacetime metric determined by the Einstein equation.
Keywords: 04.20.Cv      04.62.+v      11.30.-j      12.10.-g     
Received: 25 August 2011      Published: 30 October 2011
PACS:  04.20.Cv (Fundamental problems and general formalism)  
  04.62.+v (Quantum fields in curved spacetime)  
  11.30.-j (Symmetry and conservation laws)  
  12.10.-g (Unified field theories and models)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
NI Jun
[1] Weinberg S 1996 Quantum Theory of Fields vols 1, 2 and 3 (New York: Cambridge University Press)
[2] Yang C N and Mills R L 1954 Phys. Rev. 96 191
[3] Einstein A 1952 The Principle of Relativity (A Collection of Original Memoirs on the Special and General Theory of Relativity) (New York: Dover Publications Inc.)
[4] Dirac P A M 1996 General Theory of Relativity (Princeton Landmarks in Physics Series) (Princeton, New Jersey: Princeton University Press)
[5] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[6] Zee A 2008 AAPPS Bull. 18 32
[7] Belinfante F 1939 Physica 6 887
[8] Srednicki M 2007 Quantum Field Theory (New York: Cambridge University Press)
[9] Rosenfeld L 1963 Nucl. Phys. 40 353
[10] Oppenheimer J R and Volkoff G M 1939 Phys. Rev. 55 374
[11] Ni J 2011 Sci. Chin. Phys. Mech. Astron. 54 1304
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 110401
[2] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 110401
[3] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 110401
[4] ZHU Yin . Measurement of the Speed of Gravity[J]. Chin. Phys. Lett., 2011, 28(7): 110401
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 110401
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 110401
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 110401
[8] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 110401
[9] ZOU De-Cheng, YANG Zhan-Ying**, YUE Rui-Hong** . Thermodynamics of Slowly Rotating Charged Black Holes in Anti-de Sitter Einstein–Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2011, 28(2): 110401
[10] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 110401
[11] Salah Eddine Ennadifi**, Adil Belhaj, El Hassan Saidi, . Fermion Mass Hierarchies in Singlet-Extended Minimal-Supersymmetric-Standard-Model Quivers[J]. Chin. Phys. Lett., 2011, 28(11): 110401
[12] WEI Yi-Huan**, CHU Zhong-Hui . Thermodynamic Properties of a Reissner–Nordström Quintessence Black Hole[J]. Chin. Phys. Lett., 2011, 28(10): 110401
[13] MEI Feng-Xiang, CUI Jin-Chao, CHANG Peng. A Field Integration Method for a Weakly Nonholonomic System[J]. Chin. Phys. Lett., 2010, 27(8): 110401
[14] HE Xiao-Gang, , MA Bo-Qiang,. Black Holes and Photons with Entropic Force[J]. Chin. Phys. Lett., 2010, 27(7): 110401
[15] WEI Yi-Huan. Mechanical and Thermal Properties of the AH of FRW Universe[J]. Chin. Phys. Lett., 2010, 27(5): 110401
Viewed
Full text


Abstract