Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110203    DOI: 10.1088/0256-307X/28/11/110203
GENERAL |
Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation
HUANG Wei-Li1,2, CAI Jian-Le2**
1Department of Physics and Telecom Engineering, Hunan City University, Yiyang 413000
2College of Science, Hangzhou Normal University, Hangzhou 310018
Cite this article:   
HUANG Wei-Li, CAI Jian-Le 2011 Chin. Phys. Lett. 28 110203
Download: PDF(434KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Conformal invariance and conserved quantities for a higher-order Lagrange system by Lie point transformation of groups are studied. The differential equation of motion for the higher-order Lagrange system is introduced. The definition of conformal invariance for the system together with its determining equations and conformal factor are provided. The necessary and sufficient condition that the system's conformal invariance would be Lie symmetry by the infinitesimal one-parameter point transformation group is deduced. The conserved quantity of the system is derived using the structural equation satisfied by the gauge function. An example of a higher-order mechanical system is offered to illustrate the application of the result.
Keywords: 02.20.Sv      11.30.-j      45.20.Jj      03.50.-z     
Received: 15 July 2011      Published: 30 October 2011
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  03.50.-z (Classical field theories)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110203       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Wei-Li
CAI Jian-Le
[1] Noether A E 1918 Nachr. Akad. Math. 2 235
[2] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science) (in Chinese)
[3] Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science) (in Chinese)
[4] Mei F X 2001 Chin. Phys. 10 177
[5] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology) (in Chinese)
[6] Zhang Y 2005 Acta Phys. Sin. 54 2980 (in Chinese)
[7] Luo S K 2007 Chin. Phys. Lett. 24 3017
[8] Luo S K, Chen X W and Guo Y X 2007 Chin. Phys. 16 3176
[9] Luo S K and Zhang Y F et al 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science) (in Chinese)
[10] Jia L Q, Cui J C, Luo S K and Yang X F 2009 Chin. Phys. Lett. 26 030303
[11] Fang J H, Zhang M J and Lu K 2009 Chin. Phys. Lett. 26 110202
[12] Zhang M J, Fang J H, Lu K and Zhang K J 2009 Chin. Phys. Lett. 26 120201
[13] LI Y M 2010 Chin. Phys. Lett. 27 010202
[14] Zheng S W, Xie J F, Wang J B and Chen X W 2010 Chin. Phys. Lett. 27 030307
[15] Xie Y L and Jia L Q 2010 Chin. Phys. Lett. 27 120201
[16] Jiang W A and Luo S K 2011 Acta Phys. Sin. 60 060201 (in Chinese)
[17] Li Z J, Jiang W A and Luo S K 2011 Nonlinear Dyn. (accepted)
[18] Jia L Q, Xie Y L and Luo S K 2011 Acta Phys. Sin. 60 040201 (in Chinese)
[19] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[20] Jiang W A and Luo S K 2011 Nonlinear Dyn. (accepted)
[21] Jiang W A, Li L, Li Z J and Luo S K 2011 Nonlinear Dyn. (accepted)
[22] Galiullin A S, Gafarov G G, Malaishka R P and Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow: UFN) (in Russian)
[23] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[24] Cai J L 2008 Chin. Phys. Lett. 25 1523
[25] Cai J L 2010 Int. J. Theor. Phys. 49 201
[26] Cai J L, Shi S S, Fang H J and Xu J 2011 Meccanica (accepted)
[27] He G and Mei F X 2008 Chin. Phys. B 17 2764
[28] Mei F X, Xie J F and Gang T Q 2008 Acta Mech. Sin. 24 583
[29] Xia L L, Cai J L and Li Y C 2009 Chin. Phys. B 18 3158
[30] Luo Y P 2009 Int. J. Theor. Phys. 48 2665
[31] Li Y C, Xia L L and Wang X M 2009 Chin. Phys. B 18 4643
[32] Zhang Y 2009 Chin. Phys. B 18 4636
[33] Luo Y P and Fu J L 2010 Chin. Phys. B 19 090303
[34] Cai J L 2009 Acta Phys. Pol. A 115 854
[35] Cai J L 2009 Acta Phys. Sin. 58 22 (in Chinese)
[36] Luo Y P and Fu J L 2010 Chin. Phys. B 19 090304
[37] Cai J L 2010 Acta Phys. Pol. A 117 445
[38] Luo Y P and Fu J L 2011 Chin. Phys. B 20 021102
[39] Zhang X W 2005 Acta Phys. Sin. 54 4483 (in Chinese)
Related articles from Frontiers Journals
[1] HUANG Chao-Guang,**,TIAN Yu,WU Xiao-Ning,XU Zhan,ZHOU Bin. New Geometry with All Killing Vectors Spanning the Poincaré Algebra[J]. Chin. Phys. Lett., 2012, 29(4): 110203
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 110203
[3] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 110203
[4] FENG Hai-Ran**, CHENG Jie, YUE Xian-Fang, ZHENG Yu-Jun, DING Shi-Liang . Analytical Research on Rotation-Vibration Multiphoton Absorption of Diatomic Molecules in Infrared Laser Fields[J]. Chin. Phys. Lett., 2011, 28(7): 110203
[5] JIANG Zhi-Wei . A New Model for Quark Mass Matrix[J]. Chin. Phys. Lett., 2011, 28(6): 110203
[6] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 110203
[7] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 110203
[8] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 110203
[9] WANG Peng . Perturbation to Noether Symmetry and Noether adiabatic Invariants of Discrete Mechanico-Electrical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 110203
[10] CHEN Xiang-Wei, MEI Feng-Xiang** . Jacobi Last Multiplier Method for Equations of Motion of Constrained Mechanical Systems[J]. Chin. Phys. Lett., 2011, 28(4): 110203
[11] LI Ji-Na, ZHANG Shun-Li, ** . Approximate Symmetry Reduction for Initial-value Problems of the Extended KdV-Burgers Equations with Perturbation[J]. Chin. Phys. Lett., 2011, 28(3): 110203
[12] WANG Hong**, TIAN Ying-Hui, CHEN Han-Lin . Non-Lie Symmetry Group and New Exact Solutions for the Two-Dimensional KdV-Burgers Equation[J]. Chin. Phys. Lett., 2011, 28(2): 110203
[13] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 110203
[14] NI Jun . Unification of General Relativity with Quantum Field Theory[J]. Chin. Phys. Lett., 2011, 28(11): 110203
[15] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 110203
Viewed
Full text


Abstract