Chin. Phys. Lett.  2011, Vol. 28 Issue (11): 110204    DOI: 10.1088/0256-307X/28/11/110204
GENERAL |
Analysis and Control of Two-Layer Frenkel–Kontorova Model
TANG Wen-Yan1**, QU Zhi-Hua1,2, GUO Yi3
1School of Information Science and Engineering, Central South University, Changsha 410075
2School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA
3Department of Electrical and Computer Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
Cite this article:   
TANG Wen-Yan, QU Zhi-Hua, GUO Yi 2011 Chin. Phys. Lett. 28 110204
Download: PDF(526KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A one-dimensional two-layer Frenkel–Kontorova model is studied. Firstly, a feedback tracking control law is given. Then, the boundedness result for the error states of single particles of the model is derived using the Lyapunov Method. Especially, the motion of single particles can be approximated analytically for the case of sufficiently large targeted velocity. Simulations illustrate the accuracy of the derived results.
Keywords: 02.30.Yy      68.35.Af      05.45.-a     
Received: 18 March 2011      Published: 30 October 2011
PACS:  02.30.Yy (Control theory)  
  68.35.Af (Atomic scale friction)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/11/110204       OR      https://cpl.iphy.ac.cn/Y2011/V28/I11/110204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TANG Wen-Yan
QU Zhi-Hua
GUO Yi
[1] Braun O M and Kivshar Y S 2004 The Frenkel–Kontorova Model (Berlin: Springer)
[2] Savin A V et al 2003 Phys. Rev. E 67 041205
[3] Vanossi A et al 2004 Surf. Sci. 566-568 816
[4] Braiman Y et al 1997 Phys. Rev. B 55 5491
[5] Röder J et al 1998 Phys. Rev. B 57 2759
[6] Chou C I et al 1998 Phys. Rev. E 57 2747
[7] Braiman Y et al 2003 Phys. Rev. Lett. 90 094301
[8] Protopopescu V and Barhen J 2004 Chaos 14 400
[9] Guo Y and Qu Z 2008 Automatica 44 2560
[10] Hammerberg J E et al 1998 Physica D 123 330
[11] Datta K B 2008 Matrix and Linear Algebra-Aided with Matlab (Rajkamal Electric Press) p 327
[12] Helman J S et al 1993 Phys. Rev. B 49 3831
[13] Landau L D and Lifshitz E M 1976 Mechanics (London: Pergamon Press) 337
[14] Khalil H 2002 Nolinear Systems (New Jersey: Prentice Hall) p 126
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 110204
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 110204
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 110204
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 110204
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 110204
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 110204
[7] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 110204
[8] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 110204
[9] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 110204
[10] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 110204
[11] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 110204
[12] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 110204
[13] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 110204
[14] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 110204
[15] WANG Can-Jun** . Vibrational Resonance in an Overdamped System with a Sextic Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 110204
Viewed
Full text


Abstract