Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040306    DOI: 10.1088/0256-307X/27/4/040306
GENERAL |
Effective Mass Dirac--Morse Problem with any κ-value
<IMG src=
1Department of Physics Education, Hacettepe University,06800, Ankara, Turkey2Department of Physics, Middle East Technical University, 06531,Ankara, Turkey3Faculty of Engineering, Ba\cskent University, Bagl\ica Campus,Ankara, Turkey
Cite this article:   
<, IMG src= 2010 Chin. Phys. Lett. 27 040306
Download: PDF(350KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Dirac-Morse problem is investigated within the framework of an approximation to the term proportional to 1/r2 in the view of the position-dependent mass formalism. The energy eigenvalues and corresponding wave functions are obtained by using the parametric generalization of the Nikiforov-Uvarov method for any κ-value. We also study the approximate energy eigenvalues, and the corresponding wave functions in the case of the constant-mass for pseudospin, and spin cases, respectively.

Keywords: 03.65.-w      03.65.Ge      12.39.Fd     
Received: 24 December 2009      Published: 27 March 2010
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Ge (Solutions of wave equations: bound states)  
  12.39.Fd  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040306       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
<
IMG src=
[1] Von~Roos O 1983 Phys. Rev. B 27 7547
[2] Levy-Leblond J M 1995 Phys. Rev. A 52 1845
[3] Jia C S, Wang P Q, Liu J Y and He S 2008 Int. J. Theor. Phys. 47 2513
[4] Alhaidari A D 2004 Phys. Lett. A 322 72
[5] Jia C S and Dutra A S 2008 Ann. Phys. 323 566
[6] Gora T and Williams F 1969 Phys. Rev. 177 11979
[7] Luttinger J M and Kuhn W 1955 Phys. Rev. 97 869
[8] Wanner G H 1957 Phys. Rev. 52 191
[9] Slater J C 1949 Phys. Rev. 52 1592
[10] Serra L and Lipparini E 1997 Europhys. Lett. 40 667
[11] Hecht K T and Adler A 1969 Nucl. Phys. A 137 139
[12] Arima A, Harvey M and Shimizu K 1969 Phys. Lett. B 30 517
[13] Ginocchio J N 1997 Phys. Rev. Lett. 78 (3) 436
[14] Dudek J, Nazarewicz W, Szymanski Z and Le Ander G 1987 Phys. Rev. Lett. 59 1405
[15] Bohr A, Hamamoto I and Mottelson B R 1982 Phys. Scr. 26 267
[16] Troltenier D, Bahri C and Draayer J P 1995 Nucl. Phys. A 586 53
[17] Ginocchio J N 1999 Phys. Rep. 315 231
[18] Ginocchio J N 2001 Nucl. Phys. A 59 41c
[19] Ginocchio J N 2002 Phys. Rev. C 66 064312
[20] Qiang W C, Zhou R S and Gao Y 2007 J. Phys. A: Math. Theor. 40 1677
[21] Gou J Y and Sheng Z Q 2005 Phys. Lett. A 338 90
[22] Alhaidari A D, Bahlouli H and Al-Hasan A 2006 Phys. Lett. A 349 87
[23] Castro A S, Alberto P, Lisboa R and Fiolhais M 2006 Phys. Rev C 73 054309
[24] Jia C S, Guo P and Peng X L 2006 J. Phys. A: Math. Gen. 39 7737
[25] Zhang L H, Li X P and Jia C S 2008 Phys. Lett. A 372 2201
[26] Xu Y, He S and Jia C S 2008 J. Phys. A: Math. Theor. 41 255302
[27] Jia C S, Guo P, Diao Y F, Yi L Z and Xie X J 2007 Eur. Phys. J. A 34 41
[28] Berkdemir C and Sever R 2008 J. Phys. A 41 045302
[29] Soylu A, Bayrak O and Boztosun I 2007 J. Math. Phys. 48 082302
[30] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel: Birkhauser)
[31] Greiner G 1981 Relativistic Quantum Mechanics (Berlin: Springer)
[32] Morse P M 1929 Phys. Rev. 34 57
[33] Pekeris C L 1934 Phys. Rev. 45 98
[34] Nasser I, Abdelmonem M S, Bahlouli H and Alhaidari A D 2007 J. Phys. B 40 4245
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 040306
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 040306
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 040306
[4] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 040306
[5] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 040306
[6] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 040306
[7] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 040306
[8] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 040306
[9] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 040306
[10] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 040306
[11] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 040306
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 040306
[13] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 040306
[14] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 040306
[15] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 040306
Viewed
Full text


Abstract