Chin. Phys. Lett.  2010, Vol. 27 Issue (4): 040305    DOI: 10.1088/0256-307X/27/4/040305
GENERAL |
Ground State Eigenfunction of Spheroidal Wave Functions

TIAN Gui-Hua, ZHONG Shu-Quan

School of Science, Beijing University of Posts andTelecommunications, Beijing 100876
Cite this article:   
TIAN Gui-Hua, ZHONG Shu-Quan 2010 Chin. Phys. Lett. 27 040305
Download: PDF(292KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We study the spin-weighted spheroidal wave functions in the case of s=m=0. Their eigenvalue problem is investigated by the perturbation method in supersymmetric quantum mechanics. In the first three terms of parameter α=a2w2, the ground eigenvalue and eigenfunction are obtained. The obtained ground eigenfunction is elegantly in closed forms. These results are new and very useful for the application of the spheroidal wave functions.

Keywords: 03.65.Ge      02.30.Gp      11.30.Pb     
Received: 10 December 2009      Published: 27 March 2010
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  02.30.Gp (Special functions)  
  11.30.Pb (Supersymmetry)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/4/040305       OR      https://cpl.iphy.ac.cn/Y2010/V27/I4/040305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Gui-Hua
ZHONG Shu-Quan
[1] Flammer C 1956 Spheroidal Wave Functions (Stanford, CA: Stanford University)
[2] Stratton J A, Morse J P M, Chu L J, Little J D C and Corbato F J 1956 Spheroidal Wave Functions (New York: John Wiley and Sons Inc.)
[3] Li L W, Kang X K and Leong M S 2002 Spheroidal Wave Functions in Electromagnetic Theory (New York: John Wiley and Sons, Inc.)
[4] Teukolsky S A 1972 Phys. Rev. Lett. 29 1114
Teukolsky S A 1973 {J. Astrophys.} 185 {635}
[5] Slepian D and Pollak H O 1961 Bell. Syst. Technol. J. 40 43
[6] Caldwell J 1988 J. Phys. A 21 3685
[7] Hodge D B 1970 J. Math. Phys . 11 2308
[8] Sinha B P and MacPhie R H 1975 J. Math. Phys. 16 2378
[9] Falloon P E, Abbott P C and Wang J B math-ph/0212051
Berti E, Cardoso V and Casals M 2006 Phys. Rev. D 73 {024013}
Berti E, Cardoso V, Kokkotas K D and Onozawa H 2003 Phys. Rev. D 68 {124018}
Berti E, Cardoso V and Casals M 2005 gr-qc/0511111 v4
[10] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
[11] Dutt R, Khare A and Sukhatme U 1988 Am. J. Phys. 56 163
[12] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[13] Tian G H and Zhong S Q 2009 quant-ph/0906.4685v2
Related articles from Frontiers Journals
[1] Ramesh Kumar, Fakir Chand. Energy Spectra of the Coulomb Perturbed Potential in N-Dimensional Hilbert Space[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[2] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 040305
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 040305
[5] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 040305
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 040305
[7] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 040305
[8] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 040305
[9] M. R. Setare, *, D. Jahani, ** . Quantum Hall Effect and Different Zero-Energy Modes of Graphene[J]. Chin. Phys. Lett., 2011, 28(9): 040305
[10] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 040305
[11] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 040305
[12] O. Bayrak**, A. Soylu, I. Boztosun . Effect of the Velocity-Dependent Potentials on the Bound State Energy Eigenvalues[J]. Chin. Phys. Lett., 2011, 28(4): 040305
[13] WANG Jun-Min . Traveling Wave Evolutions of a Cosh-Gaussian Laser Beam in Both Kerr and Cubic Quintic Nonlinear Media Based on Mathematica[J]. Chin. Phys. Lett., 2011, 28(3): 040305
[14] ZHANG Ping, CAI Liang, LIAN Zeng-Ju, PAN Xiao-Yin. Density Profile of a Hard Disk Liquid System under Gravity[J]. Chin. Phys. Lett., 2010, 27(8): 040305
[15] Altu&#, , Arda, Ramazan Sever. Effective Mass Schrödinger Equation via Point Canonical Transformation[J]. Chin. Phys. Lett., 2010, 27(7): 040305
Viewed
Full text


Abstract