CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Monte Carlo Simulation on Growth of Antibody-Antigen Complexes: the Role of Unequal Reactivity |
ZHANG Ping1,2, WANG Hai-Jun1,3,4 |
1College of Chemistry and Environment Science, Hebei University, Baoding 071002 2Department of Biomedical Engineering, Chengde Medical College, Chengde 067000 3International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 4Key Laboratory of Medical Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding 071002 |
|
Cite this article: |
ZHANG Ping, WANG Hai-Jun 2010 Chin. Phys. Lett. 27 038701 |
|
|
Abstract Growth of Antibody-Antigen complexes in a multivalent Antibody-Antigen system is studied by the Monte Carlo simulation method. The validity of the algorithm is first demonstrated for the case of the equal reactivity, then the simulation is presented for the case of unequal reactivity. It is shown that the influence of the unequal reactivity on the critical point, size distribution and the weight-average binding degree is significant. Especially, the gelation regions for the cases of unequal reactivity are studied, which can provide some useful clues for the immunological experiments.
|
Keywords:
87.10.Rt
82.39.-k
87.15.-v
82.30.Nr
|
|
Received: 12 May 2009
Published: 09 March 2010
|
|
PACS: |
87.10.Rt
|
(Monte Carlo simulations)
|
|
82.39.-k
|
(Chemical kinetics in biological systems)
|
|
87.15.-v
|
(Biomolecules: structure and physical properties)
|
|
82.30.Nr
|
(Association, addition, insertion, cluster formation)
|
|
|
|
|
[1] Abbas A K and Lichtman A H 2003 Cellular and Molecular Immunology 5th edn (Philadelphia: W B Saunders) [2] Koivunen M K and Krogsrud R L 2006 Lab. Med. 37 490 [3] Van Oss C J 1995 Mol. Immunol. 32 199 [4] Reisberg M A et al 1981 Clin. Exp. Immunol. 46 443 [5] Segal D M et al 1983 J. Immunol. 130 130 [6] Brennan F M et al 1983 J. Immunol Methods 56 149 [7] Doekes G et al 1984 Scand. J. Immunol. 19 99 [8] Menon A K et al 1986 J. Cell Biol. 102 541 [9] Murphy R M et al 1990 Biochemistry 29 889 [10] Kuczek T and Moyle W R 1985 J. Immunol. Methods 84 251 [11] Wofsy C and Goldstein B 1987 Mol. Immunol. 24 151 [12] Shiau L D 1995 J. Immunol. Methods 178 267 [13] Steensgaard J, Liu B M et al 1977 Immunology 32 445 [14] Macken C A and Perelson A S 1982 J. Math. Biology 14 365 [15] Spouge J L 1983 Proc. R. Soc. London A 387 351 [16] Shiau L D 1996 Biopolymers 39 445 [17] Goldberg R J 1952 J. Am. Chem. Soc. 74 5715 [18] Goldberg R J 1953 J. Am. Chem. Soc. 75 3127 [19] Palmiter M T and Aladjem F 1963 J. Theor. Biol. 5 211 [20] Laurenzi I J et al 2003 Phys. Rev. E 67 051103 [21] Tanaka F 1989 Phys. Rev. Lett. 62 2759 [22] Spouge J L 1983 Macromolecules 16 831 [23] Semenov A N and Rubinstein M 1998 Macromolecules 31 1373 [24] Bailey M E et al 1956 Ind. Eng. Chem. 48 794 [25] Lenz R W et al 1962 J. Polym. Sci. 58 351 [26] Hodgkin J H 1976 J. Polym. Sci. Polym. Chem. Edn. 14 409 [27] Kronstadt M, Dubin P L and Tyburczy, J A 1978 Macromolecules 11 37 [28] Gupta S K, Kumar A and Bhargava A 1979 Eur. Polym. J. 15 557 [29] Gandhi K S and Babu S V 1980 Macromolecules 13 791 [30] Kumar A 1987 Macromolecules 20 220 [31] Park O O 1988 Macromolecules 21 732 [32] Yang J et al 2008 Phys. Rev. E 78 031910 [33] Yang Y L and Zhang H D 1993 Monte Carlo Methods in Polymer Science (ShangHai: Fudan University Press) [34] von Schulthess G K, Benedek G B and De Blois R W 1983 Macromolecules 16 434 [35] Gillespie D T 1975 J. Atmos. Sci. 32 1977 [36] Gillespie D T 1976 J. Comput. Phys. 22 403 [37] Tang A C and Kiang Y S 1958 Science Record, New Ser. 11 110 [38] Tang A C 1985 Statistical Theory of Polymeric Reactions |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|