CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Metamorphic InGaAs p-i-n Photodetectors with 1.75 μm Cut-Off Wavelength Grown on GaAs |
ZHU Bin1, HAN Qin1, YANG Xiao-Hong1, NI Hai-Qiao2, HE Ji-Fang2, NIU Zhi-Chuan2, WANG Xin1, WANG Xiu-Ping1, WANG Jie1 |
1State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2State Key Laboratory for Superlattices and microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 |
|
Cite this article: |
ZHU Bin, HAN Qin, YANG Xiao-Hong et al 2010 Chin. Phys. Lett. 27 038504 |
|
|
Abstract Top-illuminated metamorphic InGaAs p-i-n photodetectors (PDs) with 50% cut-off wavelength of 1.75 μm at room temperature are fabricated on GaAs substrates. The PDs are grown by a solid-source molecular beam epitaxy system. The large lattice mismatch strain is accommodated by growth of a linearly graded buffer layer to create a high quality virtual InP substrate indium content in the metamorphic buffer layer linearly changes from 2% to 60%. The dark current densities are typically 5 × 10-6 A/cm2 at 0 V bias and 2.24 × 10-4 A/cm2 at a reverse bias of 5 V. At a wavelength of 1.55 μm, the PDs have an optical responsivity of 0.48 A/W, a linear photoresponse up to 5 mW optical power at -4 V bias. The measured -3 dB bandwidth of a 32 μm diameter device is 7 GHz. This work proves that InGaAs buffer layers grown by solid source MBE are promising candidates for GaAs-based long wavelength devices.
|
Keywords:
85.60.Gz
73.40.Kp
81.15.Hi
|
|
Received: 11 December 2009
Published: 09 March 2010
|
|
PACS: |
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
|
|
[1] Ibrahim K et al 2002 IEEE Photon. Technol. Lett. 14 366 [2] Hiroshi I et al 2004 IEEE J. Select. Top. Quantum Electron. 10709 [3] Han Q, Yang X H, Niu Z C 2005 Appl. Phys. Lett. 87 111105 [4] Zhou Z, Yang X H, Han Q 2005 J. Optoelectron. Laser 16 159 [5] Mi Z et al 2008 J. Vac. Sci. Technol. B 26 1153 [6] Wang P F et al 2009 Chin. Phy. Lett. 26 067801 [7] Haupt M et al 1996 Appl. Phys. Lett. 69 412 [8] Cavus A et al 2006 J. Vac. Sci. Technol. B 24 1492 [9] T {\aangring I et al 2007 J. Cryst. Growth 301 971 [10]T{\aangring I et al 2007 Appl. Phys. Lett. 91 221101 [11] Jang J H et al 2001 IEEE Photon. Technol. Lett. 13 151 [12] Zhang Y G et al 2005 Chin. Phys. Lett. 22 250 [13] Wang H L et al 2009 Chin. Phys. Lett. 26 014214 [14] Tian Z B, Gu Y, Wang K and Zhang Y G 2008 Chin. Phys. Lett. 25 2292 [15] Yang K et al 2001 J. Vac. Sci. Technol. B 19 2119 [16] Tersoff J 1993 Appl. Phys. Lett. 62 693 [17]Huang R T and Renner D 1991 IEEE Photon. Technol. Lett. 3 934 [18]Ishimura E et al 1990 Appl. Phys. Lett. 56 644 [19]Tulchinsky D A et al 2004 IEEE J. Sel. Top. Quantum Electron. 10 702 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|