CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Effects of AlGaN/AlN Stacked Interlayers on GaN Growth on Si (111) |
WANG Hui1, LIANG Hu2, WANG Yong2, NG Kar-Wei2, DENG Dong-Mei2, LAU Kei-May2 |
1State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083 2Photonics Technology Center, Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong |
|
Cite this article: |
WANG Hui, LIANG Hu, WANG Yong et al 2010 Chin. Phys. Lett. 27 038103 |
|
|
Abstract We report the growth of high quality and crack-free GaN film on Si (111) substrate using Al0.2Ga0.8N/AlN stacked interlayers. Compared with the previously used single AlN interlayer, the AlGaN/AlN stacked interlayers can more effectively reduce the tensile stress inside the GaN layer. The cross-sectional TEM image reveals the bending and annihilation of threading dislocations (TDs) in the overgrown GaN film which leads to a decrease of TD density.
|
Keywords:
81.15.Gh
61.72.Uj
|
|
Received: 11 December 2009
Published: 09 March 2010
|
|
PACS: |
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
|
|
|
[1] Dadgar A, Bl\"{asing J, Diez A, Alam A, Heuken M and Krost A 2000 Jpn. J. Appl. Phys. 39 L1183 [2] Dadgar A, Poschenrieder M, Bl\"{asing J, Fehse K, Diez A and Krost A 2002 Appl. Phys. Lett. 80 3670 [3] Feltin E, Beaumont B, La\"{Augt M, Mierry P de, Venn\'{egu\`{es P, Lahr$\muup$eche H, Leroux M and Gibart P 2001 Appl. Phys. Lett. 79 3230 [4] Marchand H, Zhao L, Zhang N, Moran B, Coffie R, Mishra U K, Speck J S, Denbaars S P and Freitas J A 2001 J. Appl. Phys. 89 7846 [5] Able A, Wegscheider W, Engl K and Zweek J 2005 J. Cryst. Growth 276 415 [6] Cheng K, Leys M, Degroote S, Daele B V, Boeykens S, Derluyn J, Germain M, Tendeloo G V, Engelen J and Borghs G 2006 J. Electron. Mater. 35 592 [7] Kim M, Do Y, Kang H C, Noh D Y and Park S J 2001 Appl. Phys. Lett. 79 2713 [8] Lin G Q, Zeng Y P, Wang X L and Liu H X 2008 Chin. Phys. Lett. 25 4097 [9] Bl\"{asing J, Reiher A, Dadgar A, Diez A, and Krost A, 2002 Appl. Phys. Lett. 81 2722 [10] Dadgar A, Poschenrieder M, Reiher A, Bl\"{asing J, Christen J, Krtschil A, Finger T, Hempel T, Diez A and Krost A 2003 Appl. Phys. Lett. 82 28 [11] Zhang B S, Liang H, Wang Y, Feng Z H, Ng K W and Lau K M 2007 J. Cryst. Growth 298 725 [12] Perlin P, Carrillon C J, Itie J P, Miguel A S, Grzegory I and Polian A 1992 Phys. Rev. B 45 83 [13] Tripathy S, Chua S J, Chen P and Miao Z L 2002 J. Appl. Phys. 92 3503 [14] Wang L S, Tripathy S, Wang B Z, Teng J H, Chow S Y and Chua S J 2006 Appl. Phys. Lett. 89 011901 [15] Follstaedt D M, Lee S R, Provencio P P, Allerman A A, Floro J A and Crawford M H, 2005 Appl. Phys. Lett. 87 121112 [16] Wang J F, Yao D Z, Chen J, Zhu J J, Zhao D G, Jiang D S, Yang H and Liang J W 2006 Appl. Phys. Lett. 89 152105 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|