Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 038101    DOI: 10.1088/0256-307X/27/3/038101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Preparation of High-Density Nanocrystalline Bulk Selenium by Rapid Compressing of Melt

HU Yun1, SU Lei1,2, LIU Xiu-Ru1, SUN Zhen-Ya3, LV Shi-Jie1, YUAN Chao-Sheng1, JIA Ru1, SHEN Ru1, HONG Shi-Ming1

1Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu 610031 2Department of Physics, Zhengzhou University of Light Industry, Zhengzhou 450002 3Center for Materials Research and Testing, Wuhan University of Technology, Wuhan 430070
Cite this article:   
HU Yun, SU Lei, LIU Xiu-Ru et al  2010 Chin. Phys. Lett. 27 038101
Download: PDF(770KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The melt's solidification behavior of elemental selenium is investigated by a series of experiments including rapid compressing to 2.8 and 3.5 GPa within 20ms respectively, slow compressing to 2.8 GPa for 20 min and natural cooling at ambient pressure. Based on the x-ray diffraction, scanning electron microscope and transmission electron microscope results of the recovered samples, it is clearly shown that homogenous nanostructures are formed only by the rapid compression processes, and that the average crystal sizes are about 18.7 and 19.0 nm in the samples recovered from 2.8 and 3.5 GPa, respectively. The relative density of the nanocrystalline bulk reaches 98.17% of the theoretical value. It is suggested that rapid compression could induce pervasive nucleation and restrain grain growth during the solidification, which is related to fast supercooling, higher viscosity of the melt and lower diffusivity of atoms under high pressure.
Keywords: 81.20.-n      81.05.-t     
Received: 08 September 2009      Published: 09 March 2010
PACS:  81.20.-n (Methods of materials synthesis and materials processing)  
  81.05.-t (Specific materials: fabrication, treatment, testing, and analysis)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/038101       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/038101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HU Yun
SU Lei
LIU Xiu-Ru
SUN Zhen-Ya
LV Shi-Jie
YUAN Chao-Sheng
JIA Ru
SHEN Ru
HONG Shi-Ming
[1] Birring R, Gleiter H and Klein H P 1984 Phys. Lett. A 102 365
[2] Gleiter H 2000 Acta Mater. 48 1
[3] Song X Y, Zhang J X, Yue M, Li E D, Zeng H, Lu N D, Zhou M L and Zuo T Y 2006 Adv. Mater. 18 1210
[4] Qin Y, Zhu Y and Li Z Q 1993 Chin. Phys. Lett. 10 609
[5] Nieman G W, Weertman J R and Siegel R W 1991 J. Mater. Res. 6 1012
[6] Fougere G E, Weertman J R and Siegel R W 1995 Nanostruct. Mater. 5 127
[7] Konrad H, Haubold T, Birringer R and H Gleiter 1996 Nanostruct. Mater. 7 605
[8] Horst Hahn 1997 Nanostruct. Mater. 9 3
[9] Koch C C and Whittenberger J D 1996 Intemrrtdlics 4 339
[10] Cheng S, Ma E, Wang Y M, Kecskes L J, Youssef K M, Koch C C, Trociewitz U P and Han K 2005 Acta. Materialia 53 1521
[11] Valiev R Z, Islamgaliev R K and Alexandrov I V 2000 Prog. Mater. Sci. 45 103
[12] Langdona T G 2009 Mater. Sci. Engin. A 503 6
[13] Lu K 1999 Adv. Mater. 11 1127
[14] Zhang H Y, Lu K and Hu Z Q 1995 Acta Phys. Sin. 44 109 (in Chinese)
[15] Yao B, Li D J, Wang A M, Ding B Z, Li S L and Hu Z Q 1995 Physica B 212 61
[16] Qin Z C, Zhang Y, Zhang F X, Liu W and Wang W K 1995 Acta Phys. Sin. 44 105 (in Chinese)
[17] Zhou Y S,Wu X J, Li B H and Xu G L 2000 Chin. J. High Pressure Phys. 14 219 (in Chinese)
[18] Shi X L, Cao M S, Fang X Y, Yuan J,Kang Y Q and Song W L 2008 Appl. Phys. Lett. 93 223112
[19] Hong S M, Chen L Y, Liu X R, Wu X H and Su L 2005 Rev. Sci. Instrum. 76 053905
[20] Hong S M, Liu X R and Su L 2006 J. Phys. D: Appl. Phys. 39 3684
[21] Jia R, Shao C G and Hong S M 2007 J. Phys. D: Appl. Phys. 40 3763
[22] Liu X R, Hong S M, Lv S J and Shen R 2007 Appl. Phys. Lett. 91 081910
[23] Umehara A, Nitta S, Furukawa H and Nonomura S 1997 Appl. Surf. Sci. 119 176
[24] Belev G and Kasap S O 2004 J. Non-Cryst. Solids 345/346 484
[25] Cannon J F 1974 J. Phys. Chem. Ref. Data 3 805
[26] Tong X S, Jin D, Bai H Y, Luo J L and Wang W K 1997 Acta Phys. Sin. (Oversea Edition) 6 752
[27] Nieman G W, Weertman J R and Siege R W 1991 J. Mater. Res. 6 1012
[28] Wu X J, Du L G, Zhang H F, Liu J F, Zhou Y S, Li Z Q, Xiong L Y and Bai Y L 1999 Nanostruct. Mater. 12 221
[29] Liu W, Yang T Z, Chu G, Luo J S and Tang Y J 2007 Trans. Nonferrous. Metals Soc. Chin. 17 1347
[30] Qin X Y, Wu X J and Zhang L D 1995 Nanostruct. Mater. 5 101
Related articles from Frontiers Journals
[1] LU Ran,JIANG Gen-Shan,LI Bin,ZHAO Quan-Liang,ZHANG De-Qing,YUAN Jie,CAO Mao-Sheng**. Electrical Properties of Lead Zirconate Titanate Thick Film Containing Micro- and Nano-Crystalline Particles[J]. Chin. Phys. Lett., 2012, 29(5): 038101
[2] HE Jun, J. C. LEE, LI Ming, WANG Ze-Song, LIU Chuan-Sheng, FU De-Jun** . Computerized Control and Operation of Rutherford Backscattering/Channeling for an in situ Ion Beam System and Its Application for Measurement of Si(001) and ZnO(001)[J]. Chin. Phys. Lett., 2011, 28(1): 038101
[3] YAN Bao-Rong, LV Jian-Hong, KONG Ling-Hua, HU Xi-Wei** . Numerical Studies of s-Polarized Surface Plasmon Polaritons at the Interface Associated with Metamaterial[J]. Chin. Phys. Lett., 2010, 27(11): 038101
[4] REN Kun, RAO Feng, SONG Zhi-Tang, WU Liang-Cai, ZHOU Xi-Lin, XIA Meng-Jiao, LIU Bo, FENG Song-Lin, XI Wei, YAO Dong-Ning, CHEN Bomy. Si3.5Sb2Te3 Phase Change Material for Low-Power Phase Change Memory Application[J]. Chin. Phys. Lett., 2010, 27(10): 038101
[5] HU Xing, LING Zhi-Yuan, CHEN Shuo-Shuo, HE Xin-Hua. Influence of Light Scattering on Transmission Spectra of Photonic Crystals of Anodized Alumina[J]. Chin. Phys. Lett., 2008, 25(9): 038101
[6] DUAN Zhong-Xia, YUAN Jie, ZHAO Quan-Liang, LIU Hong-Mei, LIN Hai-Bo, ZHANG Wen-Tong, CAO Mao-Sheng. Preparation and Ferroelectric Properties of Double-Scale PZT Composite Piezoelectric Thick Film[J]. Chin. Phys. Lett., 2008, 25(4): 038101
[7] LIU Gui-Ling, HUANG Zheng-Ren, LIU Xue-Jian, JIANG Dong-Liang. Effect of Density and Surface Roughness on Optical Properties of Silicon Carbide Optical Components[J]. Chin. Phys. Lett., 2008, 25(3): 038101
[8] TAO Jun, LU Yong-Hua, ZHENG Rong-Sheng, LIN Kai-Qun, XIE Zhi-Guo, LUO Zhao-Feng, LI Sheng-Li, WANG Pei, MING Hai. Effect of Aspect Ratio Distribution on Localized Surface Plasmon Resonance Extinction Spectrum of Gold Nanorods[J]. Chin. Phys. Lett., 2008, 25(12): 038101
[9] YANG Jian, QIU Tai, SHEN Chun-Ying. New BCN Fibres for Strong Ultraviolet and Visible Light Luminescence[J]. Chin. Phys. Lett., 2006, 23(9): 038101
[10] WANG Hong-Chang, WANG Zhan-Shan, ZHANG Shu-Min, WU Wen-Juan, ZHANG Zhong, GU Zhong-Xiang, XU Yao, WANG Feng-Li, CHENG Xin-Bin, WANG Bei, QIN Shu-Ji, CHEN Ling-Yan. Fabrication and Characterization of Ni Thin Films Using Direct-Current Magnetron Sputtering[J]. Chin. Phys. Lett., 2005, 22(8): 038101
[11] CHEN Zhao-Ying, XIANG Hong-Jun, YANG Jin-Long. Fermi Surface Topology of Na0.5CoO2 from the Hybrid Density Functional[J]. Chin. Phys. Lett., 2005, 22(12): 038101
[12] GUO Li-Cong, HU Wen-Tao, HE Ju-Long, YU Dong-Li, LIU Shi-Min, LI Dong-Chun, TIAN Yong-Jun. Synthesis of Boron-Rich Cubic B(CxN1-x) Compounds[J]. Chin. Phys. Lett., 2005, 22(12): 038101
[13] YANG Li-Hong, DONG Cheng, SONG Hui-Hua, GUO Juan, FU Guang-Cai. Superconductivity in LiTi2O4 Prepared by Hybrid Microwave Method[J]. Chin. Phys. Lett., 2005, 22(1): 038101
[14] ZHEN Wan-Bao., LIU Wei-Li, SONG Zhi-Tang, FENG Song-Lin, ZHU Shi-Fu, ZHAO Bei-Jun. Single Crystal Si Layers on Glass Fabricated by Hydrophilic Fusion Bonding and Smart-Cut Technology[J]. Chin. Phys. Lett., 2004, 21(12): 038101
[15] HUANG Hong-Bo, TAO Jian-Qing, YU Zhi, SHAO Ting, HSIA Yuan-Fu. Mössbauer Studies on Spin Transition in Zinc Dilution Complexes [Fe1-xZnx(dpp)2(NCS)2].py (x = 0.05-0.40) [J]. Chin. Phys. Lett., 2003, 20(7): 038101
Viewed
Full text


Abstract