Chin. Phys. Lett.  2010, Vol. 27 Issue (3): 030502    DOI: 10.1088/0256-307X/27/3/030502
GENERAL |
Effect of Time Delay on Stochastic Tumor Growth
TIAN Jing, CHEN Yong
Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
TIAN Jing, CHEN Yong 2010 Chin. Phys. Lett. 27 030502
Download: PDF(466KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the dynamics of tumor cell growth with time-delayed feedback driven by multiplicative noise in an asymmetrical bistable potential well. For a small delay time, the analytical solutions of the probability distribution and the first passage time show that, with the increasing delay time, the peak of the probability distribution in a lower population state would increase, but in a higher population state it decreases. It is shown that the multiplicative noise and the time delay play opposite roles in the tumor cell growth.
Keywords: 05.40.-a      05.40.Ca      02.50.-r     
Received: 03 December 2009      Published: 09 March 2010
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.40.Ca (Noise)  
  02.50.-r (Probability theory, stochastic processes, and statistics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/27/3/030502       OR      https://cpl.iphy.ac.cn/Y2010/V27/I3/030502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TIAN Jing
CHEN Yong
[1] Bru A, Albertos S, Lopez J A, Garcia-Asenjo and Bru I 2004 Phys. Rev. Lett. 92 238101
[2] Ai B Q, Wang X J, Liu G T and Liu L G 2003 Phys. Rev. E 67 022903
[3] Fiasconaro A and Spagnolo B 2006 Phys. Rev. E 74 041904
[4] Escudero C 2006 Phys. Rev. E 73 020902
[5] Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 74 011916
[6] Cai J C, Wang C J and Mei D C 2007 Chin. Phys. Lett. 24 1162
[7] Horthemke W and Lefever R 1984 Noise-Induced Transitions: Theory and Applications in Physics, Chemistry and Biology (Berlin: Springer)
[8] Guo F, Hang Z Q, Fan Y and Zhang Y 2009 Chin. Phys. Lett. 26 100504
[9] Zeng C H and Xie C W 2008 Chin. Phys. Lett. 25 1587
[10] Nie R L, Gong A L and Mei D C 2009 Chin. Phys. Lett. 26 060504
[11] Jia Z L 2008 Chin. Phys. Lett. 25 1209
[12] Hutchinson G E 1948 Ann. N. Y. Acad. Sci. 50 221
[13] Murry J D 2002 Mathematical Biology (Berlin: Springer)
[14] Zhong W R, Shao Y Z and He Z H 2006 Phys. Rev. E 73 060902
[15] Novikov E A 1964 Zh. Eksp Teor. Fiz. 47 1919
[16] Guillouzic S, L'Heurex I and Longtin A 1999 Phys. Rev. E 59 3970
[17] Frank T D and Beek P J 2001 Phys. Rev. E 64 021917
[18] Lindenberg K and West B J 1986 J. Stat. Phys. 42 201
[19] Masoliver J, West B J and Lindenberg K 1987 Phys. Rev. A 35 3086
[20] Vilar J M G and Sole R V 1998 Phys. Rev. Lett. 80 4099
[21] Kuznetsov V A, Makalkin I A, Taylor M A and Perelson A S 1994 Bull. Math. Biol. 56 295
[22] Bose T and Trimper S 2009 Phys. Rev. E 79 051903
Related articles from Frontiers Journals
[1] BAI Zhan-Wu. Role of the Bath Spectrum in the Specific Heat Anomalies of a Damped Oscillator[J]. Chin. Phys. Lett., 2012, 29(6): 030502
[2] SHU Chang-Zheng,NIE Lin-Ru**,ZHOU Zhong-Rao. Stochastic Resonance-Like and Resonance Suppression-Like Phenomena in a Bistable System with Time Delay and Additive Noise[J]. Chin. Phys. Lett., 2012, 29(5): 030502
[3] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 030502
[4] TIAN Liang, LIN Min. Relaxation of Evolutionary Dynamics on the Bethe Lattice[J]. Chin. Phys. Lett., 2012, 29(3): 030502
[5] REN Xue-Zao, YANG Zi-Mo, WANG Bing-Hong, ZHOU Tao. Mandelbrot Law of Evolving Networks[J]. Chin. Phys. Lett., 2012, 29(3): 030502
[6] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030502
[7] GU Shi-Jian**, WANG Li-Gang, WANG Zhi-Guo, LIN Hai-Qing. Repeater-Assisted Zeno Effect in Classical Stochastic Processes[J]. Chin. Phys. Lett., 2012, 29(1): 030502
[8] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 030502
[9] ZHANG Lu, ZHONG Su-Chuan, PENG Hao, LUO Mao-Kang** . Stochastic Multi-Resonance in a Linear System Driven by Multiplicative Polynomial Dichotomous Noise[J]. Chin. Phys. Lett., 2011, 28(9): 030502
[10] LI Chun, MEI Dong-Cheng, ** . Effects of Time Delay on Stability of an Unstable State in a Bistable System with Correlated Noises[J]. Chin. Phys. Lett., 2011, 28(4): 030502
[11] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 030502
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 030502
[13] WANG Shao-Hua, YANG Ming**, WU Da-Jin . Diffusion of Active Particles Subject both to Additive and Multiplicative Noises[J]. Chin. Phys. Lett., 2011, 28(2): 030502
[14] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 030502
[15] HE Zheng-You, ZHOU Yu-Rong** . Vibrational and Stochastic Resonance in the FitzHugh–Nagumo Neural Model with Multiplicative and Additive Noise[J]. Chin. Phys. Lett., 2011, 28(11): 030502
Viewed
Full text


Abstract